Patents by Inventor Weiqi Hua

Weiqi Hua has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11814339
    Abstract: A method for preparing an isocyanate in a gaseous phase by feeding, in the presence or absence of an inert gas, an amine-containing gas stream and a phosgene-containing gas stream into a reaction region, allowing the amine and the phosgene to contact in gaseous forms and undergo a phosgenation reaction in the reaction region, thus preparing the target isocyanate in a gaseous form in the reaction region. The phosgene-containing stream is subjected to preheating and warming before being fed into the reaction region, and the phosgene-containing stream comprises a substance A at a mass fraction of <1% before being subjected to the preheating and warming up. Substance A is a NCO group-containing substance and/or an olefinic double bond-containing substance. The method reduces the formation of clogging matter in a heat exchanger and a vessel during the preheating and warming of the phosgene and during the reaction process.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: November 14, 2023
    Assignees: WANHUA CHEMICAL GROUP CO., LTD., WANHUA CHEMICAL (NINGBO) CO., LTD.
    Inventors: Weiqi Hua, Tonghe Li, Yonghua Shang, Shuchang Sun, Jingxu Wang, Jinping Han, Qiang Li, Wenbin Li, Jing Li, Pengfei Wang, Yuan Li
  • Patent number: 11511260
    Abstract: The present invention relates to a preparation method for an olefin epoxidation catalyst, comprising: (1) preparing a titanium-silicon gel; (2) performing pore-enlarging treatment to the titanium-silicon gel by using organic amine or liquid ammonia, and drying, calcinating to obtain a titanium-silicon composite oxide; (3) optionally performing alcohol solution of organic alkali metal salt treatment; and (4) optionally performing gas-phase silanization treatment. The catalyst prepared by the method of the present invention has adjustable variability for pore size, so that the activity thereof for epoxidation reactions of the olefin molecules with different dynamic diameters is higher; the surface acidity of the catalyst can be reduced effectively through two-step modification to the catalyst, so that the catalyst has higher selectivity for epoxidation product.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: November 29, 2022
    Inventors: Tongji Wang, Fei Ye, Lei Wang, Naibo Chu, Lichao Yang, Kang Sun, Yuan Li, Weiqi Hua
  • Publication number: 20220227915
    Abstract: Preparation method for a polyurethane optical resin and applications thereof. The preparation method for the polyurethane optical resin comprises: a raw material composition comprising isocyanate and a polythiol compound undergoes a polymerization to produce the polyurethane optical resin. The turbidity value of the isocyanate used in the raw material composition is controlled at ?2 NTU. The polyurethane optical resin produced is applicable in manufacturing optical products.
    Type: Application
    Filed: July 20, 2020
    Publication date: July 21, 2022
    Inventors: Jianfeng LI, Yonghua SHANG, Qian WU, Fulin ZHU, Peng WANG, Hao CHEN, Peimeng SHI, Weiqi HUA, Yuan LI
  • Patent number: 11291985
    Abstract: A preparation method for a propylene epoxidation catalyst: pre-hydrolyzing a silicon source, adding a titanium source and reacting to form a sol, atomizing the sol and then spraying it into liquid ammonia for molding, implementing pore broadening, and performing drying, calcination, and silanization treatment to obtain a Ti—SiO2 composite oxide catalyst. The present catalyst can be used in the chemical process of preparing propylene oxide by epoxidation of propylene, the average propylene oxide selectivity being up to 97.5%, having prospects for industrial application.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: April 5, 2022
    Inventors: Lei Wang, Tongji Wang, Fei Ye, Lichao Yang, Guangquan Yi, Jiaoying Cui, Naibo Chu, Yuan Li, Weiqi Hua
  • Publication number: 20220056209
    Abstract: Disclosed by the present invention is a method for preparing a reactive sealant resin, the method comprising: (1) under the action of an alkali catalyst, polymerizing a hydroxyl-containing initiator with an epoxy compound to obtain a polyether polyol; (2) adding an alkoxide reagent and a halogenated end-capping agent containing a double bond to the polyether polyol obtained in step (1) for reaction, so as to obtain a crude double-bonded polyether product, and refining the crude product to obtain a modified polyether product; and (3) subjecting the modified polyether and hydrogen-containing silane to silane end-capping reaction under the action of a hydrosilylation catalyst, so as to obtain the target product, i.e., a reactive sealant resin. The resin has excellent properties as well as good adhesion and paintability.
    Type: Application
    Filed: December 27, 2018
    Publication date: February 24, 2022
    Applicants: WANHUA CHEMICAL GROUP CO., LTD., WANHUA CHEMICAL (NINGBO) CO., LTD.
    Inventors: Changxun Ju, Bin Liu, Mingyong Wang, Tian Ye, Zhengyang Shi, Yuan Li, Weiqi Hua
  • Publication number: 20220024863
    Abstract: A method for preparing an isocyanate in a gaseous phase by feeding, in the presence or absence of an inert gas, an amine-containing gas stream and a phosgene-containing gas stream into a reaction region, allowing the amine and the phosgene to contact in gaseous forms and undergo a phosgenation reaction in the reaction region, thus preparing the target isocyanate in a gaseous form in the reaction region. The phosgene-containing stream is subjected to preheating and warming before being fed into the reaction region, and the phosgene-containing stream comprises a substance A at a mass fraction of <1% before being subjected to the preheating and warming up. Substance A is a NCO group-containing substance and/or an olefinic double bond-containing substance. The method reduces the formation of clogging matter in a heat exchanger and a vessel during the preheating and warming of the phosgene and during the reaction process.
    Type: Application
    Filed: December 26, 2018
    Publication date: January 27, 2022
    Inventors: Weiqi HUA, Tonghe LI, Yonghua SHANG, Shuchang SUN, Jingxu WANG, Jinping HAN, Qiang LI, Wenbin LI, Jing LI, Pengfei WANG, Yuan LI
  • Patent number: 11213811
    Abstract: Disclosed in the present invention are a preparation method for an olefin epoxidation catalyst and applications thereof. The method comprises: loading an auxiliary metal salt onto a silica gel carrier, and carrying out a drying treatment to the silica gel carrier; loading a titanium salt (preferably TiCl4) onto the silica gel carrier by a chemical vapor deposition method; calcining to obtain a silica gel on which the auxiliary metal oxide and Ti species are loaded; obtaining an catalyst precursor (Ti-MeO—SiO2 composite oxide) by water vapor washing; loading alkyl silicate (preferably tetraethyl orthosilicate) onto the surface of the catalyst precursor by a chemical vapor deposition method and calcining the catalyst precursor to obtain a Ti-MeO—SiO2 composite oxide with the surface coated with a SiO2 layer; and carrying out a silylanization treatment to obtain the catalyst.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: January 4, 2022
    Assignee: WANHUA CHEMICAL GROUP CO., LTD.
    Inventors: Lei Wang, Tongji Wang, Fei Ye, Lichao Yang, Guangquan Yi, Jiaoying Cui, Naibo Chu, Yuan Li, Weiqi Hua
  • Patent number: 11167280
    Abstract: Disclosed is catalyst preparation method for liquid phase hydrogenation of acetophenone in preparation of ?-phenylethanol. The method includes adding water, small alcohol, Gemini surfactant and organic pore-forming agent to reactor. Then adding silica sol and stirring to prepare aqueous dispersion of silica sol; preparing alkaline precipitant and mixed solution containing salts of copper containing compound, zinc containing compound, rare-earth metal containing compound and alkaline-earth metal containing compound, adding alkaline precipitant and mixed solution together to aqueous dispersion, followed by precipitation, ageing, filtration, washing, drying, calcination and molding to obtain catalyst.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: November 9, 2021
    Inventors: Zuojin Li, Haibo Yu, Jishan Zhan, Yu Sha, Naibo Chu, Yuan Li, Weiqi Hua
  • Patent number: 11111332
    Abstract: An isocyanate polymerization catalyst, a preparation method thereof and a method for preparing polyisocyanates comprising isocyanurate groups by using the same. The catalyst is a carboxylic acid salt containing a di-quaternary ammonium ion. The structure of the catalyst contains hydroxyl-containing aromatic heterocyclic residues. The catalyst is highly active. Only a small quantity of the catalyst is required for the polymerization of isocyanates. The prepared polyisocyanates have color values lower than 25 Hazen, monomer contents of less than 0.5% by weight, high contents of isocyanurates and low viscosities.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: September 7, 2021
    Inventors: Wei Liu, Yonghua Shang, Bin Shi, Yuqi Wang, Lidong Sun, Yuan Li, Weiqi Hua
  • Patent number: 11059772
    Abstract: Disclosed is an imine-type quaternary ammonium salt catalyst, wherein the catalyst has a general structure formula shown by formula I below; in the formula, R1 and R2, respectively, are independently selected from a C1-C20 linear alkyl or a branched C3-C20 alkyl, and a C1-C20 hydroxylalkyl, a C3-C8 cycloalkyl, and arylated alkyl; R3 is a linear or branched alkyl, cycloalkyl or aryl; and R4 is hydrogen, aryl, a linear C1-C15 alkyl or branched C3-C15 alkyl. Also disclosed are a method for preparing the catalyst and a polyisocyanate composition prepared therefrom. The catalyst, by introducing an imine structure, on the basis of ensuring high catalytic activity thereof, is allowed to have properties of high temperature decomposition and inactivation, and when applied to the synthesis of polyisocyanate, can effectively prevent the risk of explosive polymerization caused by an uncontrolled reaction.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: July 13, 2021
    Inventors: Nuancheng Wang, Yonghua Shang, Yuqi Wang, Bin Shi, Zhicheng Zhu, Hefu Li, Yuan Li, Weiqi Hua
  • Patent number: 11059033
    Abstract: A catalyst for catalytic oxidation treatment of organic wastewater, comprising aluminum oxide, and nickel, ferrum, manganese, and cerium supported on the aluminum oxide in oxide form. Based on the weight of aluminum oxide, the contents of the following components in the catalyst are: nickel: 5.0-20 wt %; ferrum: 0.5-5.5 wt %; manganese: 0.5-3.5 wt %; and cerium: 1.5-3.0 wt %. The present invention has a good effect in catalytic oxidation for degrading COD organic pollutants in wastewater and has high reactivity.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: July 13, 2021
    Inventors: Bo Zhou, Hua Heng, Hongke Zhang, Liangjin Chen, Junjun Wang, Zhenlong Fan, Weiqi Hua
  • Patent number: 11045794
    Abstract: A supported catalyst used for synthesizing a polyether amine, and a manufacturing method of the catalyst. The catalyst comprises: a porous oxide as a support; Ni, Cu, Pd, and Rh as active components; and one or more of any of Zr, Cr, Mo, Fe, Zn, Sn, Bi, Ce, La, Hf, Sr, Sb, Mg, Be, Re, Ta, Ti, Sc, Ge and related metals as an auxiliary agent. The catalyst can be used in an amination reaction for a large molecular weight polyether polyol, and is particularly active and selective for an amination reaction of a low molecular weight polyether polyol. The catalyst has a simple and economic manufacturing technique and good potential for future applications.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: June 29, 2021
    Inventors: Shujie Ren, Congying Zhang, Xin Li, Zhenguo Liu, Xiaolong Wang, Lei Tang, Zhipeng Liu, Zhanyu Gao, Jian Wu, Cong Wang, Yuan Li, Qingmei Jiang, Jinhong Song, Weiqi Hua, Hao Ding
  • Patent number: 11000837
    Abstract: A catalyst for preparing chlorine gas by hydrogen chloride oxidation, comprising the following components calculated according to mass content based on the total weight of the catalyst: 0.5-20 wt % copper; 2-10 wt % manganese; 0.05-2 wt % boron; 0.01-3 wt % chromium; 0.1-10 wt % rare earth metal; 0.1-10 wt % potassium; and 3-15 wt % titanium; also comprising 0.02-1.1 wt % phosphorus; and 0.03-1.9 wt % iron; the carrier content is 55-90 wt %. In the case of a fluidized bed reactor, the present catalyst can achieve a one-way hydrogen chloride conversion rate of 80-85%. Almost all of the 0-1000 mg/kg of chlorinated benzene contained in hydrogen chloride gas can be converted into CO2 and H2O without generating polychlorinated benzene.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: May 11, 2021
    Inventors: Hongke Zhang, Bo Zhou, Zhangwei Zai, Dan Xu, Yu Yao, Yanlong Xu, Dongke Zhao, Jingjing Yang, Jiansheng Ding, Weiqi Hua
  • Publication number: 20210113990
    Abstract: The present invention relates to a preparation method for an olefin epoxidation catalyst, comprising: (1) preparing a titanium-silicon gel; (2) performing pore-enlarging treatment to the titanium-silicon gel by using organic amine or liquid ammonia, and drying, calcinating to obtain a titanium-silicon composite oxide; (3) optionally performing alcohol solution of organic alkali metal salt treatment; and (4) optionally performing gas-phase silanization treatment. The catalyst prepared by the method of the present invention has adjustable variability for pore size, so that the activity thereof for epoxidation reactions of the olefin molecules with different dynamic diameters is higher; the surface acidity of the catalyst can be reduced effectively through two-step modification to the catalyst, so that the catalyst has higher selectivity for epoxidation product.
    Type: Application
    Filed: June 29, 2018
    Publication date: April 22, 2021
    Applicant: Wanhua Chemical Group Co., Ltd.
    Inventors: Tongji Wang, Fei Ye, Lei Wang, Naibo Chu, Lichao Yang, Kang Sun, Yuan Li, Weiqi Hua
  • Patent number: 10974233
    Abstract: The present invention provides a method for preparing 1,5-pentanediol via hydrogenolysis of tetrahydrofurfuryl alcohol. The catalyst used in the method is prepared by supporting a noble metal and a promoter on an organic polymer supporter or an inorganic hybrid material supporter, wherein the supporter is functionalized by a nitrogen-containing ligand. When the catalyst is used in the hydrogenolysis of tetrahydrofurfuryl alcohol to prepare 1,5-pentanediol, a good reaction activity and a high selectivity can be achieved. The promoter and the nitrogen-containing ligand in the supporter are bound to the catalyst through coordination, thereby the loss of the promoter is significantly decreased, and the catalyst has a particularly high stability. The lifetime investigation of the catalyst, which has been reused many times or used continuously for a long term, suggests that the catalyst has no obvious change in performance, thus reducing the overall process production cost.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: April 13, 2021
    Assignee: WANHUA CHEMICAL GROUP CO., LTD.
    Inventors: Jianglin Hu, Yunhai Liu, Yuan Li, Qingmei Jiang, Yanfang Song, Yang Yang, Changsheng Chen, Ke Ding, Wei Zeng, Hengdong Yang, Kun Wang, Weiqi Hua
  • Patent number: 10898883
    Abstract: An organic-base functionalized silicalite-1 molecular sieve-encapsulated metal nanoparticles catalyst and a preparation method therefor, as well as a method for preparing 1,2-pentanediol from biomass-derived furfuryl alcohol by hydrogenolysis using said catalyst. When the catalyst is used in a reaction preparing 1,2-pentanediol from furfuryl alcohol by hydrogenolysis, the catalyst has high hydrogenolysis activity under relatively mild reaction conditions, significantly increasing the conversion rate of furfuryl alcohol and 1,2-pentanediol selectivity in the reaction, while also not generating obvious byproducts furfuryl alcohol polymers; the catalyst has good stability and long life, and may be recovered for reuse after the reaction is complete by means of a simple filtration, greatly reducing reaction costs and separation difficulty.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: January 26, 2021
    Assignee: Wanhua Chemical Group Co., Ltd.
    Inventors: Jianglin Hu, Yunhai Liu, Xinjian Bian, Yuan Li, Qingmei Jiang, Changsheng Chen, Yanfang Song, Yang Yang, Wei Zeng, Ke Ding, Hengdong Yang, Kun Wang, Weiqi Hua
  • Publication number: 20200377445
    Abstract: Disclosed is an imine-type quaternary ammonium salt catalyst, wherein the catalyst has a general structure formula shown by formula I below; in the formula, R1 and R2, respectively, are independently selected from a C1-C20 linear alkyl or a branched C3-C20 alkyl, and a C1-C20 hydroxylalkyl, a C3-C8 cycloalkyl, and arylated alkyl; R3 is a linear or branched alkyl, cycloalkyl or aryl; and R4 is hydrogen, aryl, a linear C1-C15 alkyl or branched C3-C15 alkyl. Also disclosed are a method for preparing the catalyst and a polyisocyanate composition prepared therefrom. The catalyst, by introducing an imine structure, on the basis of ensuring high catalytic activity thereof, is allowed to have properties of high temperature decomposition and inactivation, and when applied to the synthesis of polyisocyanate, can effectively prevent the risk of explosive polymerization caused by an uncontrolled reaction.
    Type: Application
    Filed: February 13, 2018
    Publication date: December 3, 2020
    Applicant: Wanhua Chemical Group Co., Ltd.
    Inventors: Nuancheng Wang, Yonghua Shang, Yuqi Wang, Bin Shi, Zhicheng Zhu, Hefu Li, Yuan Li, Weiqi Hua
  • Patent number: 10787593
    Abstract: Provided are an emulsifiable isocyanate composition and a preparation method therefor. The emulsifiable isocyanate composition comprises the following components: (a) a polymethylene polyphenyl polyisocyanate, (b) an emulsifier, (c) an adduct derived from a diisocyanate, and optionally (d) a terpene monomer. The emulsifiable isocyanate composition is used in artificial board adhesives, and has a smaller mold cumulative effect, an improved demoulding performance and an extended pot life.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: September 29, 2020
    Assignee: WANHUA CHEMICAL GROUP CO., LTD.
    Inventors: Wangshun Qi, Zuolong Liu, Song Tu, Bo Wang, Xianbo Liu, Deqiang Ma, Bo Xin, Cheng Gong, Weiqi Hua
  • Publication number: 20200282388
    Abstract: Disclosed is a preparation method of a catalyst for liquid phase hydrogenation of acetophenone in preparation of ?-phenylethanol, including: adding water, a small alcohol, a Gemini surfactant and an organic pore-forming agent to a reactor, followed by adding a silica sol and stirring well to prepare an aqueous dispersion of silica sol; preparing an alkaline precipitant and a mixed solution containing salts of a copper containing compound, a zinc containing compound, a rare-earth metal containing compound and an alkaline-earth metal containing compound, adding the alkaline precipitant and the mixed solution together to the aqueous dispersion of silica sol, followed by precipitation, ageing, filtration, washing, drying, calcination and molding to obtain the catalyst.
    Type: Application
    Filed: June 29, 2018
    Publication date: September 10, 2020
    Applicant: Wanhua Chemical Group Co., Ltd.
    Inventors: Zuojin Li, Haibo Yu, Jishan Zhan, Yu Sha, Naibo Chu, Yuan Li, Weiqi Hua
  • Publication number: 20200269228
    Abstract: A preparation method for a propylene epoxidation catalyst: pre-hydrolyzing a silicon source, adding a titanium source and reacting to form a sol, atomizing the sol and then spraying it into liquid ammonia for molding, implementing pore broadening, and performing drying, calcination, and silanization treatment to obtain a Ti—SiO2 composite oxide catalyst. The present catalyst can be used in the chemical process of preparing propylene oxide by epoxidation of propylene, the average propylene oxide selectivity being up to 97.5%, having prospects for industrial application.
    Type: Application
    Filed: June 14, 2018
    Publication date: August 27, 2020
    Applicant: Wanhua Chemical Group Co., Ltd.
    Inventors: Lei Wang, Tongji Wang, Fei Ye, Lichao Yang, Guangquan Yi, Jiaoying Cui, Naibo Chu, Yuan Li, Weiqi Hua