Patents by Inventor Weirong Jiang
Weirong Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250254097Abstract: Embodiments of the disclosure provide a method, an apparatus, a device, and a readable medium for network simulation. The method includes: running a simulation network corresponding to a backbone network and a data center network in a simulation test environment, where the simulation network includes simulation nodes corresponding to a full set of devices in the backbone network and simulation nodes corresponding to a part of devices in the data center network, and the part of devices include a full set of core devices in a core-level network of the data center network and a part of basic devices sampled from a basic-level network; receiving a test request for the data center network, where the test request includes change command for one or more devices; adjusting the simulation network based on the test request; and performing network simulation on the adjusted simulation network in the network simulation environment.Type: ApplicationFiled: January 30, 2025Publication date: August 7, 2025Inventors: Zhaoyu Gao, Weirong Jiang, Anubhavnidhi Abhashkumar, Yi Wang, Jian Wang
-
Patent number: 12336964Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter di of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: GrantFiled: July 17, 2024Date of Patent: June 24, 2025Assignee: Corning IncorporatedInventors: Connor Thomas O'Malley, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Steven Edward DeMartino, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut, Adam Robert Sarafian
-
Publication number: 20250082545Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: ApplicationFiled: November 21, 2024Publication date: March 13, 2025Inventors: Christy Lynn Chapman, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Connor Thomas O'Malley, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, JR., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, JR., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Steven Edward DeMartino, Robert Anthony Schaut, Adam Robert Sarafian
-
Patent number: 12226370Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: GrantFiled: March 29, 2023Date of Patent: February 18, 2025Assignee: Corning IncorporatedInventors: Christie Leigh McCarthy, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Steven Edward DeMartino, Connor Thomas O'Malley, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut
-
Patent number: 12186267Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: GrantFiled: May 2, 2023Date of Patent: January 7, 2025Assignee: Corning IncorporatedInventors: Christy Lynn Chapman, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Connor Thomas O'Malley, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Steven Edward DeMartino, Robert Anthony Schaut, Adam Robert Sarafian
-
Publication number: 20240422070Abstract: The disclosure provides a method, an apparatus, an electronic device and a storage medium for network topology-based verification. The method comprises: obtaining a network verification request which comprises device change information for a physical network; determining a target network device changed in the physical network using the device change information, and obtaining extended network devices from network devices in each of the hierarchical layers in the physical network, the extended network devices obtained in each of the hierarchical layers corresponding to different providers; constructing an emulated network topology based on the target network device and the extended network devices; and establishing an emulation runtime environment corresponding to the emulated network topology, and performing emulation verification on the emulated network topology based on the emulation runtime environment to obtain an emulation verification result.Type: ApplicationFiled: June 14, 2024Publication date: December 19, 2024Inventors: Weirong Jiang, Anubhavnidhi Abhashkumar, Zhaoyu Gao, Yi Wang, Jian Wang
-
Publication number: 20240366474Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter di of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: ApplicationFiled: July 17, 2024Publication date: November 7, 2024Inventors: Connor Thomas O'Malley, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Steven Edward DeMartino, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut, Adam Robert Sarafian
-
Publication number: 20240327278Abstract: A method of strengthening glass articles includes introducing potassium ions to a surface region of the glass by an initial ion-exchange process, thermally treating the glass at a thermal treatment temperature and time sufficient to diffuse the potassium ions further into the glass to a depth of layer, and introducing a compressive stress of greater than 400 MPa at the surface through a final ion-exchange process. The final ion-exchange process may be conducted at a final ion-exchange temperature of no more than 450° C. The method of strengthening produces a glass article having a compressive stress of at least 400 MPa at the surface, a depth of compression of at least 30 ?m, and a central tension less than a threshold central tension above which flaws penetrating into the central region of the glass exhibit spontaneous self-propagation of the flaw front through and across the glass.Type: ApplicationFiled: June 14, 2024Publication date: October 3, 2024Inventors: Rebecca Vernon Higginbottom, Weirong Jiang, Sean Thomas Miller
-
Patent number: 12076296Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: GrantFiled: September 30, 2022Date of Patent: September 3, 2024Assignee: Corning IncorporatedInventors: Steven Edward DeMartino, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Connor Thomas O'Malley, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut, Adam Robert Sarafian
-
Patent number: 12076297Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: GrantFiled: May 2, 2023Date of Patent: September 3, 2024Assignee: Corning IncorporatedInventors: Joseph Michael Matusick, Sinue Gomez-Mower, Weirong Jiang, Steven Edward DeMartino, Christie Leigh McCarthy, Connor Thomas O'Malley, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut, Adam Robert Sarafian
-
Publication number: 20240288350Abstract: Disclosed herein are testing apparatuses for testing stresses in substrates. The testing apparatus includes a base, a first plate coupled to the base, the first plate being movable relative to the base along a first axis, a second plate coupled to the base, the second plate being movable relative to the base and relative to the first plate along a second axis that is perpendicular to the first axis, a first actuator operable to move the first plate along the first axis towards or away from the second plate, a second actuator operable to move the second plate along the second axis relative to the first plate, and a controller operatively connected to the first actuator and the second actuator operable to control movement of the first plate and the second plate.Type: ApplicationFiled: February 25, 2024Publication date: August 29, 2024Inventors: Nicholas Robert Bonham, Yu Cheng, Rachid Gafsi, Kurt Edward Gerber, Paul M Giglio, Suresh Thakordas Gulati, Fang-Yu Hsu, Te Heng Hung, Weirong Jiang, Cheng Yu Lai, Peter Joseph Lezzi, Jody Paul Markley, JR., Arpita Mitra, Douglas Miles Noni, Samuel Odei Owusu, Timothy Paul Smith, Ryan Christopher Sutton, Jamie Todd Westbrook
-
Publication number: 20240285471Abstract: A glass cartridge comprises a cylindrical body portion comprising an outer diameter Dc and an average sidewall thickness Tc, the cylindrical body portion having a first end and a second end opposite the first end; an opening at the first end of the cylindrical body portion; a shoulder extending radially inward from the second end of the cylindrical body portion; and a neck extending from the shoulder and comprising an outer neck diameter NOD that is less than the outer diameter Dc of the cylindrical body portion. The average wall thickness Tc is less than or equal to 0.85*s1, wherein s1 is a wall thickness of a standard glass cartridge defined by ISO 13926-1:2004 having an outer diameter d1 that is closer to the outer diameter Dc than the outer diameter d1 of any other standard glass cartridge defined by ISO 13926-1:2004.Type: ApplicationFiled: April 5, 2024Publication date: August 29, 2024Applicant: CORNING INCORPORATEDInventors: Connor Thomas O'Malley, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Christy Lynn Chapman, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Steven Edward DeMartino, Robert Anthony Schaut, Adam Robert Sarafian, Alicia Marie Gallagher
-
Patent number: 12037282Abstract: A method of strengthening glass articles includes introducing potassium ions to a surface region of the glass by an initial ion-exchange process, thermally treating the glass at a thermal treatment temperature and time sufficient to diffuse the potassium ions further into the glass to a depth of layer, and introducing a compressive stress of greater than 400 MPa at the surface through a final ion-exchange process. The final ion-exchange process may be conducted at a final ion-exchange temperature of no more than 450° C. The method of strengthening produces a glass article having a compressive stress of at least 400 MPa at the surface, a depth of compression of at least 30 ?m, and a central tension less than a threshold central tension above which flaws penetrating into the central region of the glass exhibit spontaneous self-propagation of the flaw front through and across the glass.Type: GrantFiled: October 11, 2019Date of Patent: July 16, 2024Assignee: CORNING INCORPORATEDInventors: Rebecca Vernon Higginbottom, Weirong Jiang, Sean Thomas Miller
-
Patent number: 11963928Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: GrantFiled: May 2, 2023Date of Patent: April 23, 2024Assignee: CORNING INCORPORATEDInventors: James Ernest Webb, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Connor Thomas O'Malley, John Stephen Peanasky, Shivani Rao Polasani, Steven Edward DeMartino, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut, Adam Robert Sarafian
-
Patent number: 11963929Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: GrantFiled: May 2, 2023Date of Patent: April 23, 2024Assignee: CORNING INCORPORATEDInventors: Connor Thomas O'Malley, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Christy Lynn Chapman, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Steven Edward DeMartino, Robert Anthony Schaut, Adam Robert Sarafian
-
Publication number: 20240019904Abstract: An edge surface includes a first peripheral surface extending between a first major surface and an outer peripheral surface of a substrate. The first peripheral surface includes a first depth and a first width. In aspects, the first depth is from about 4 micrometers to about 12 micrometers, and the first width is from about 30 micrometers to about 50 micrometers. In aspects, the first depth is from about 14 micrometers to about 24 micrometers, and the first width is from about 40 micrometers to about 60 micrometers. In aspects, a ratio of the first depth to a substrate thickness is from about 0.2 to about 0.4, a ratio of the first width to the substrate thickness is from about 1 to about 1.55, and a ratio of the first width to the first depth is from about 2 to about 8.Type: ApplicationFiled: July 14, 2023Publication date: January 18, 2024Inventors: YU CHENG, FANG-YU HSU, WEIRONG JIANG, PETER JOSEPH LEZZI, SAMUEL ODEI OWUSU
-
Publication number: 20230301872Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: ApplicationFiled: May 2, 2023Publication date: September 28, 2023Inventors: James Ernest Webb, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Connor Thomas O’Malley, John Stephen Peanasky, Shivani Rao Polasani, Steven Edward DeMartino, Michael Clement Ruotolo, JR., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, JR., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut, Adam Robert Sarafian
-
Publication number: 20230301873Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: ApplicationFiled: May 2, 2023Publication date: September 28, 2023Inventors: Joseph Michael Matusick, Sinue Gomez-Mower, Weirong Jiang, Steven Edward DeMar, Christie Leigh McCarthy, Connor Thomas O’Malley, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut, Adam Robert Sarafian
-
Publication number: 20230270627Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: ApplicationFiled: May 2, 2023Publication date: August 31, 2023Inventors: Connor Thomas O'Malley, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Christy Lynn Chapman, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, JR., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, JR., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Steven Edward DeMartino, Rob Anthony Schaut, Adam Robert Sarafian
-
Publication number: 20230270626Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.Type: ApplicationFiled: May 2, 2023Publication date: August 31, 2023Inventors: Christy Lynn Chapman, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Connor Thomas O'Malley, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Steven Edward DeMartino, Rob Anthony Schaut, Adam Robert Sarafian