Patents by Inventor Weize Chen
Weize Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20160365422Abstract: Integrated circuit devices with counter-doped conductive gates. The devices have a semiconductor substrate that has a substrate surface. The devices also have a first well of a first conductivity type, a source of a second conductivity type, and a drain of the second conductivity type. A channel extends between the source and the drain. A conductive gate extends across the channel The conductive gate includes a first gate region and a second gate region of the second conductivity type and a third gate region of the first conductivity type. The third gate region extends between the first and second gate regions. The devices further include a gate dielectric that extends between the conductive gate and the substrate and also include a silicide region in electrical communication with the first, second, and third gate regions. The methods include methods of manufacturing the devices.Type: ApplicationFiled: August 24, 2016Publication date: December 15, 2016Applicant: Freescale Semiconductor, Inc.Inventors: Weize Chen, Richard J. de Souza, Md M. Hoque, Patrice M. Parris
-
Publication number: 20160356740Abstract: Protected sensor field effect transistors (SFETs). The SFETs include a semiconductor substrate, a field effect transistor, and a sense electrode. The SFETs further include an analyte-receiving region that is supported by the semiconductor substrate, is in contact with the sense electrode, and is configured to receive an analyte fluid. The analyte-receiving region is at least partially enclosed. In some embodiments, the analyte-receiving region can be an enclosed analyte channel that extends between an analyte inlet and an analyte outlet. In these embodiments, the enclosed analyte channel extends such that the analyte inlet and the analyte outlet are spaced apart from the sense electrode. In some embodiments, the SFETs include a cover structure that at least partially encloses the analyte-receiving region and is formed from a cover material that is soluble within the analyte fluid. The methods include methods of manufacturing the SFETs.Type: ApplicationFiled: June 5, 2015Publication date: December 8, 2016Applicant: Freescale Semiconductor, Inc.Inventors: Patrice M. Parris, Weize Chen, Richard J. de Souza, Jose Fernandez Villasenor, Md M. Hoque, David E. Niewolny, Raymond M. Roop
-
Patent number: 9502304Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a drain region of the second conductivity type, and the diode circuit is connected between the isolation structure and the drain region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).Type: GrantFiled: September 4, 2015Date of Patent: November 22, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Weize Chen, Hubert M. Bode, Richard J. De Souza, Patrice M. Parris
-
Patent number: 9494550Abstract: Protected sensor field effect transistors (SFETs). The SFETs include a semiconductor substrate, a field effect transistor, and a sense electrode. The SFETs further include an analyte-receiving region that is supported by the semiconductor substrate, is in contact with the sense electrode, and is configured to receive an analyte fluid. The analyte-receiving region is at least partially enclosed. In some embodiments, the analyte-receiving region can be an enclosed analyte channel that extends between an analyte inlet and an analyte outlet. In these embodiments, the enclosed analyte channel extends such that the analyte inlet and the analyte outlet are spaced apart from the sense electrode. In some embodiments, the SFETs include a cover structure that at least partially encloses the analyte-receiving region and is formed from a cover material that is soluble within the analyte fluid. The methods include methods of manufacturing the SFETs.Type: GrantFiled: June 5, 2015Date of Patent: November 15, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Patrice M. Parris, Weize Chen, Richard J. de Souza, Jose Fernandez Villasenor, Md M. Hoque, David E. Niewolny, Raymond M. Roop
-
Patent number: 9478467Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary fabrication method involves forming a layer of gate electrode material overlying a semiconductor substrate, forming a layer of masking material overlying the gate electrode material, and patterning the layer of masking material to define a channel region within a well region in the semiconductor substrate that underlies the gate electrode material. Prior to removing the patterned layer of masking material, the fabrication process etches the layer of gate electrode material to form a gate structure overlying the channel region using the patterned layer of masking material as an etch mask and forms extension regions in the well region using the patterned layer of masking material as an implant mask. Thereafter, the patterned layer of masking material is removed after forming the gate structure and the extension regions.Type: GrantFiled: November 17, 2014Date of Patent: October 25, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Weize Chen, Richard J. De Souza, Patrice M. Parris
-
Patent number: 9466608Abstract: A method for making a semiconductor structure includes forming an oxide layer onto non-volatile memory, high, and low voltage device regions of a substrate and forming a first gate material layer over the oxide layer. The first gate material layer is patterned to form a set of memory device select gates in the non-volatile memory device region and a set of gates in the high voltage device region. The patterning is performed while maintaining the oxide and first gate material layers over the low voltage device region. The method also includes forming a second gate material layer over the structure and forming a non-volatile storage layer between the set of select gates and the second gate material layer, from which a set of memory device control gates is patterned. Thereafter, the first gate material layer is patterned to form a set of gates in the low voltage device region.Type: GrantFiled: October 28, 2015Date of Patent: October 11, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Weize Chen, Richard J De Souza, Patrice M Parris
-
Patent number: 9437701Abstract: Integrated circuit devices with counter-doped conductive gates. The devices have a semiconductor substrate that has a substrate surface. The devices also have a first well of a first conductivity type, a source of a second conductivity type, and a drain of the second conductivity type. A channel extends between the source and the drain. A conductive gate extends across the channel. The conductive gate includes a first gate region and a second gate region of the second conductivity type and a third gate region of the first conductivity type. The third gate region extends between the first and second gate regions. The devices further include a gate dielectric that extends between the conductive gate and the substrate and also include a silicide region in electrical communication with the first, second, and third gate regions. The methods include methods of manufacturing the devices.Type: GrantFiled: October 27, 2014Date of Patent: September 6, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Weize Chen, Richard J. de Souza, Md M. Hoque, Patrice M. Parris
-
Patent number: 9423376Abstract: A differential pair sensing circuit (300) includes control gates (306, 316) for separately programming a reference transistor (350) and a chemically-sensitive transistor (351) to a desired threshold voltage Vt to eliminate the mismatch between the transistors in order to increase the sensitivity and/or accuracy of the sensing circuit without increasing the circuit size.Type: GrantFiled: April 30, 2014Date of Patent: August 23, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Md M. Hoque, Patrice M. Parris, Weize Chen, Richard J. De Souza
-
Patent number: 9397230Abstract: Zener diode structures and related fabrication methods and semiconductor devices are provided. An exemplary semiconductor device includes first and second Zener diode structures. The first Zener diode structure includes a first region, a second region that is adjacent to the first region, and a third region adjacent to the first region and the second region to provide a junction that is configured to influence a first reverse breakdown voltage of a junction between the first region and the second region. The second Zener diode structure includes a fourth region, a fifth region that is adjacent to the fourth region, and a sixth region adjacent to the fourth region and the fifth region to provide a junction configured to influence a second reverse breakdown voltage of a junction between the fourth region and the fifth region, wherein the second reverse breakdown voltage and the first reverse breakdown voltage are different.Type: GrantFiled: July 27, 2015Date of Patent: July 19, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Weize Chen, Xin Lin, Patrice M. Parris
-
Patent number: 9330961Abstract: Protection device structures and related fabrication methods and devices are provided. An exemplary device includes a first interface, a second interface, a first protection circuitry arrangement coupled to the first interface, and a second protection circuitry arrangement coupled between the first protection circuitry arrangement and the second interface. The second protection circuitry arrangement includes a first transistor and a diode coupled to the first transistor, wherein the first transistor and the diode are configured electrically in series between the first protection circuitry arrangement and the second interface.Type: GrantFiled: September 23, 2013Date of Patent: May 3, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Weize Chen, Patrice M. Parris
-
Publication number: 20160118469Abstract: Integrated circuit devices with counter-doped conductive gates. The devices have a semiconductor substrate that has a substrate surface. The devices also have a first well of a first conductivity type, a source of a second conductivity type, and a drain of the second conductivity type. A channel extends between the source and the drain. A conductive gate extends across the channel. The conductive gate includes a first gate region and a second gate region of the second conductivity type and a third gate region of the first conductivity type. The third gate region extends between the first and second gate regions. The devices further include a gate dielectric that extends between the conductive gate and the substrate and also include a silicide region in electrical communication with the first, second, and third gate regions. The methods include methods of manufacturing the devices.Type: ApplicationFiled: October 27, 2014Publication date: April 28, 2016Applicant: Freescale Semiconductor, Inc.Inventors: Weize Chen, Richard J. de Souza, Md M. Hoque, Patrice M. Parris
-
Publication number: 20160118495Abstract: A device includes a semiconductor substrate having a first conductivity type, a device isolating region in the semiconductor substrate, defining an active area, and having a second conductivity type, a body region in the active area and having the first conductivity type, and a drain region in the active area and spaced from the body region to define a conduction path of the device, the drain region having the second conductivity type. At least one of the body region and the device isolating region includes a plurality of peripheral, constituent regions disposed along a lateral periphery of the active area, each peripheral, constituent region defining a non-uniform spacing between the device isolating region and the body region. The non-uniform spacing at a respective peripheral region of the plurality of peripheral, constituent regions establishes a first breakdown voltage lower than a second breakdown voltage in the conduction path.Type: ApplicationFiled: January 7, 2016Publication date: April 28, 2016Inventors: Weize Chen, Hubert M. Bode, Richard J. De Souza, Patrice M. Parris
-
Publication number: 20160099349Abstract: A semiconductor device configured with one or more integrated breakdown protection diodes in non-isolated power transistor devices and electronic apparatus, and methods for fabricating the devices.Type: ApplicationFiled: October 6, 2014Publication date: April 7, 2016Applicant: Freescale Semiconductor, Inc.Inventors: Patrice M. Parris, Hubert M. Bode, Weize Chen, Richard J. DeSouza, Andreas Laudenbach, Kurt U. Neugebauer
-
Publication number: 20160099240Abstract: A method of fabricating a laterally diffused metal-oxide-semiconductor (LDMOS) transistor device having a bipolar transistor for electrostatic discharge (ESD) protection includes doping a substrate to form a body region of the LDMOS transistor device in the substrate, the body region having a first conductivity type, forming a doped isolating region of the LDMOS transistor device in the substrate, the doped isolating region having a second conductivity type and surrounding a device area of the LDMOS transistor device in which the body region is disposed, forming a base contact region of the bipolar transistor, the base contact region being disposed within the body region and having the first conductivity type, and doping the substrate to form an isolation contact region for the doped isolating region that defines a collector region of the bipolar transistor, to form source and drain regions of the LDMOS transistor device in the substrate, and to form an emitter region of the bipolar transistor within the bodyType: ApplicationFiled: December 11, 2015Publication date: April 7, 2016Applicant: Freescale Seminconductor, Inc.Inventors: Weize Chen, Patrice M. Parris
-
Patent number: 9236472Abstract: A device includes a semiconductor substrate having a first conductivity type, a device isolating region in the semiconductor substrate, defining an active area, and having a second conductivity type, a body region in the active area and having the first conductivity type, and a drain region in the active area and spaced from the body region to define a conduction path of the device, the drain region having the second conductivity type. The device isolating region and the body region are spaced from one another to establish a first breakdown voltage lower than a second breakdown voltage in the conduction path.Type: GrantFiled: April 17, 2012Date of Patent: January 12, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Weize Chen, Hubert M. Bode, Richard J. De Souza, Patrice M. Parris
-
Patent number: 9231120Abstract: A Schottky diode includes a device structure having a central portion and a plurality of fingers. Distal portions of the fingers overlie leakage current control (LCC) regions. An LCC region is relatively narrow and deep, terminating in proximity to a buried layer of like polarity. Under reverse bias, depletion regions forming in an active region lying between the buried layer and the LCC regions occupy the entire extent of the active region and thereby provide a carrier depleted wall. An analogous depletion region occurs in the active region residing between any pair of adjacent fingers. If the fingers include latitudinal oriented fingers and longitudinal oriented fingers, depletion region blockades in three different orthogonal orientations may occur. The formation of the LCC regions may include the use of a high dose, low energy phosphorous implant using an LCC implant mask and the isolation structures as an additional hard mask.Type: GrantFiled: June 29, 2012Date of Patent: January 5, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Weize Chen, Xin Lin, Patrice M. Parris
-
Patent number: 9214542Abstract: A device includes a substrate, a body region in the substrate and having a first conductivity type, source and drain regions in the substrate, having a second conductivity type, and spaced from one another to define a conduction path that passes through the body region, a doped isolating region in the substrate, having the second conductivity type, and configured to surround a device area in which the conduction path is disposed, an isolation contact region in the substrate, having the second conductivity type, and electrically coupled to the doped isolating region to define a collector region of a bipolar transistor, and first and second contact regions within the body region, having the first and second conductivity types, respectively, and configured to define a base contact region and an emitter region of the bipolar transistor, respectively.Type: GrantFiled: March 11, 2013Date of Patent: December 15, 2015Assignee: Freescale Semiconductor, Inc.Inventors: Weize Chen, Patrice M. Parris
-
Publication number: 20150333189Abstract: Zener diode structures and related fabrication methods and semiconductor devices are provided. An exemplary semiconductor device includes first and second Zener diode structures. The first Zener diode structure includes a first region, a second region that is adjacent to the first region, and a third region adjacent to the first region and the second region to provide a junction that is configured to influence a first reverse breakdown voltage of a junction between the first region and the second region. The second Zener diode structure includes a fourth region, a fifth region that is adjacent to the fourth region, and a sixth region adjacent to the fourth region and the fifth region to provide a junction configured to influence a second reverse breakdown voltage of a junction between the fourth region and the fifth region, wherein the second reverse breakdown voltage and the first reverse breakdown voltage are different.Type: ApplicationFiled: July 27, 2015Publication date: November 19, 2015Applicant: FREESCALE SEMICONDUCTOR INC.Inventors: Weize CHEN, XIin LIN, Patrice M. PARRIS
-
Publication number: 20150316503Abstract: A differential pair sensing circuit (300) includes control gates (306, 316) for separately programming a reference transistor (350) and a chemically-sensitive transistor (351) to a desired threshold voltage Vt to eliminate the mismatch between the transistors in order to increase the sensitivity and/or accuracy of the sensing circuit without increasing the circuit size.Type: ApplicationFiled: April 30, 2014Publication date: November 5, 2015Applicant: FREESCALE SEMICONDUCTOR, INC.Inventors: Md M. Hoque, Patrice M. Parris, Weize Chen, Richard J. De Souza
-
Patent number: 9142554Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a body region of the second conductivity type, and the diode circuit is connected between the isolation structure and the body region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).Type: GrantFiled: November 7, 2012Date of Patent: September 22, 2015Assignee: Freescale Semiconductor, Inc.Inventors: Weize Chen, Hubert M. Bode, Richard J. De Souza, Patrice M. Parris