Patents by Inventor Weizhen Li

Weizhen Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230349549
    Abstract: A burner includes a housing, a fan, a burning head and an ignition mechanism. An air inlet of the housing and an input end of the burning head form a pressure equalizing cavity. The ignition mechanism is arranged at an output end of the burning head. The burning head includes a main frame and at least one stable burning isolation strip, an interior of the main frame is divided into at least two ventilation areas by the stable burning isolation strip in a gas channel direction. A plurality of separation mechanisms is arranged in each ventilation area and divide the ventilation area into a plurality of through holes arranged in the gas channel direction, the through holes are used for allowing mixed gas to pass through and strengthening the mixing effect. The burning flame of a burning surface of the main frame can be divided into mutually independent flames by the stable burning isolation strip.
    Type: Application
    Filed: November 29, 2021
    Publication date: November 2, 2023
    Inventors: Weizhen LI, Jingcai ZHANG, Tao ZHANG
  • Publication number: 20230220991
    Abstract: A burner contains a burner component. The burner component includes a main frame and at least one stable burning isolation strip. An interior of the main frame is divided into at least two ventilation areas by the stable burning isolation strip in a gas channel direction. Several separation mechanisms are arranged in each ventilation area and divide the ventilation area into several through holes distributed in the gas channel direction. The through holes are used for a mixed gas of fuel gas and air to pass through and enhancing a mixing effect of the fuel gas and the air. The flame of a burning surface of the main frame can be divided into independent flames by the stable burning isolation strip so that the burning is more stable and fewer pollutants are emitted.
    Type: Application
    Filed: November 29, 2021
    Publication date: July 13, 2023
    Inventors: Weizhen LI, Jingcai ZHANG, Tao ZHANG
  • Patent number: 10859261
    Abstract: A catalytic flameless combustion apparatus has a fuel inlet, a combustion-supporting gas inlet, a gas premixer, a combustion plate, an igniter, a gas deflector, a flameless combustion cavity, a catalyst filled in the flameless combustion cavity, a gas collection chamber and an exhaust port. The method for starting the catalytic flameless combustion apparatus includes initially combusting and heating the flameless combustion cavity and the catalyst filled therein with low power flame; and then increasing flow velocity and switching to high power flame for conducting catalytic flameless combustion. The catalytic flameless combustion apparatus can be used for various non-solid fuel combustion and heat extraction processes.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: December 8, 2020
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Weizhen Li, Zhiqiang Chen, Jingcai Zhang, Chuntian Wu, Tao Zhang
  • Publication number: 20190107278
    Abstract: A catalytic flameless combustion apparatus has a fuel inlet, a combustion-supporting gas inlet, a gas premixer, a combustion plate, an igniter, a gas deflector, a flameless combustion cavity, a catalyst filled in the flameless combustion cavity, a gas collection chamber and an exhaust port. The method for starting the catalytic flameless combustion apparatus includes initially combusting and heating the flameless combustion cavity and the catalyst filled therein with low power flame; and then increasing flow velocity and switching to high power flame for conducting catalytic flameless combustion. The catalytic flameless combustion apparatus can be used for various non-solid fuel combustion and heat extraction processes.
    Type: Application
    Filed: April 6, 2017
    Publication date: April 11, 2019
    Inventors: Weizhen LI, Zhiqiang CHEN, Jingcai ZHANG, Chuntian WU, Tao ZHANG
  • Patent number: 9926251
    Abstract: This invention discloses an approach for the separation of the close-boiling mixture of polyols. The raw material is ethylene glycol containing miscellaneous polyols (such as 1,2-propylene glycol and 1,2-butanediol). Over an acid catalyst, these miscellaneous polyols, through (1) a dehydration reaction, (2) pinacol rearrangement, and (3) acetalization or ketalization reaction, are converted into aldehydes (small amounts), acetals, and ketals (trace amount), which are simultaneously and readily separated via distillation. Meanwhile, after the reaction, the mixture is further separated to obtain an ethylene glycol product at a high purity. The invention provides a technique to remove the miscellaneous polyols from ethylene glycol via liquid-phase dehydration reactions under mild conditions, with low energy consumption. In particular, this approach is markedly effective for the removal of 1,2-butanediol that is difficult to be removed via conventional techniques.
    Type: Grant
    Filed: November 26, 2015
    Date of Patent: March 27, 2018
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Tao Zhang, Shuo Al, Mingyuan Zheng, Aiqin Wang, Weizhen Li, Xiaodong Wang
  • Publication number: 20170327446
    Abstract: This invention discloses an approach for the separation of the close-boiling mixture of polyols. The raw material is ethylene glycol containing miscellaneous polyols (such as 1,2-propylene glycol and 1,2-butanediol). Over an acid catalyst, these miscellaneous polyols, through (1) a dehydration reaction, (2) pinacol rearrangement, and (3) acetalization or ketalization reaction, are converted into aldehydes (small amounts), acetals, and ketals (trace amount), which are simultaneously and readily separated via distillation. Meanwhile, after the reaction, the mixture is further separated to obtain an ethylene glycol product at a high purity. The invention provides a technique to remove the miscellaneous polyols from ethylene glycol via liquid-phase dehydration reactions under mild conditions, with low energy consumption. In particular, this approach is markedly effective for the removal of 1,2-butanediol that is difficult to be removed via conventional techniques.
    Type: Application
    Filed: November 26, 2015
    Publication date: November 16, 2017
    Applicant: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Tao ZHANG, Shuo AI, Mingyuan ZHENG, Aiqin WANG, Weizhen LI, Xiaodong WANG
  • Patent number: 9266982
    Abstract: Provided are a process for preparing an N ortho acyl substituted nitrogen-containing heterocyclic compound and an aminal iron (II) complex thereof, and the use of the complexes obtained by the process in an olefin oligomerization catalyst. The N ortho acyl substituted nitrogen-containing heterocyclic compound in the present invention is for example 2-acyl-1,10-phenanthroline or 2,6-diacetyl pyridine as shown in formula b, and the N ortho acyl substituted nitrogen-containing heterocyclic compound in the present invention is produced by a reaction of a precursor thereof in a substituted or unsubstituted nitrobenzene. Preferably the precursor shown in formula I in the present invention is produced by 1,10-phenanthroline reacting with trialkyl aluminum, or a halogenoalkyl aluminum RnAIXm, or a substituted or unsubstituted benzyl lithium Ph?CH2Li, followed by hydrolysis.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: February 23, 2016
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporatin
    Inventors: Jun Liu, Mingfang Zheng, Weizhen Li, Haiying Zhang, Huaijie Wang, Yu Zhou, Tonglin Li, Lan Zhao, Hongfei Wu, Mingjun Xie, Chunhong Wu, Zhiguang Jia, Yanping Qi, Jilong Wang
  • Patent number: 9266983
    Abstract: The present disclosure provides a catalyst composition for ethylene oligomerization including an imino ferrous complex shown in Formula (I) as the main catalyst, an aluminum-containing cocatalyst, water, and an organic solvent: According to the present disclosure, a higher oligomerization activity can be obtained with the catalyst composition than with a catalyst composition system in the prior art which contains no water. Moreover, when the catalyst composition according to the present disclosure is used, a high selectivity of ?-olefins is obtainable. Besides, the catalyst composition according to the present disclosure can enable rapid initiation, stable operation, and good repeatability of the oligomerization reaction. According to the present disclosure, a high oligomerization activity can be obtained even at a rather low ratio of Al/Fe, or at a low reaction temperature.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: February 23, 2016
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Tonglin Li, Mingfang Zheng, Jun Liu, Huaijie Wang, Haiying Zhang, Weizhen Li, Jilong Wang, Yuling Piao
  • Publication number: 20140316087
    Abstract: The present disclosure provides a catalyst composition for ethylene oligomerization including an imino ferrous complex shown in Formula (I) as the main catalyst, an aluminum-containing cocatalyst, water, and an organic solvent: According to the present disclosure, a higher oligomerization activity can be obtained with the catalyst composition than with a catalyst composition system in the prior art which contains no water. Moreover, when the catalyst composition according to the present disclosure is used, a high selectivity of ?-olefins is obtainable. Besides, the catalyst composition according to the present disclosure can enable rapid initiation, stable operation, and good repeatability of the oligomerization reaction. According to the present disclosure, a high oligomerization activity can be obtained even at a rather low ratio of Al/Fe, or at a low reaction temperature.
    Type: Application
    Filed: April 16, 2014
    Publication date: October 23, 2014
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Tonglin Li, Mingfang Zheng, Jun Liu, Huaijie Wang, Haiying Zhang, Weizhen Li, Jilong Wang, Yuling Piao
  • Publication number: 20130267708
    Abstract: Provided are a process for preparing an N ortho acyl substituted nitrogen-containing heterocyclic compound and an aminal iron (II) complex thereof, and the use of the complexes obtained by the process in an olefin oligomerization catalyst. The N ortho acyl substituted nitrogen-containing heterocyclic compound in the present invention is for example 2-acyl-1,10-phenanthroline or 2,6-diacetyl pyridine as shown in formula b, and the N ortho acyl substituted nitrogen-containing heterocyclic compound in the present invention is produced by a reaction of a precursor thereof in a substituted or unsubstituted nitrobenzene. Preferably the precursor shown in formula I in the present invention is produced by 1,10-phenanthroline reacting with trialkyl aluminum, or a halogenoalkyl aluminum RnAlXm, or a substituted or unsubstituted benzyl lithium 2Li, followed by hydrolysis.
    Type: Application
    Filed: December 1, 2011
    Publication date: October 10, 2013
    Inventors: Jun Liu, Mingfang Zheng, Weizhen Li, Haiying Zhang, Huaijie Wang, Yu Zhou, Tonglin Li, Lan Zhao, Hongfei Wu, Wingjun Xie, Chunhong Wu, Zhiguang Jia, Qi Yanping, Jilong Wang
  • Publication number: 20130018214
    Abstract: The present invention provides a catalyst composition for the ethylene oligomerization, which comprises 2-imino-1,10-phenanthroline coordinated iron (II), cobalt (II) or nickel (II) chloride as main catalyst and triethylaluminum as cocatalyst. The present invention also provides a process for oligomerization of ethylene is provided, wherein a catalyst composition comprising 2-imino-1,10-phenanthroline coordinated iron (II), cobalt (II) or nickel (II) chloride as main catalyst and triethylaluminum as cocatalyst is used, and the molar ratio of aluminum in the cocatalyst to central metal in the main catalyst ranges from 30 to less than 200. According to the present invention, another process for oligomerization of ethylene is also provided, wherein a catalyst composition comprising 2-imino-1,10-phenanthroline coordinated iron (II), cobalt (II) or nickel (II) chloride as main catalyst and triethylaluminum as cocatalyst is used, and the temperature of ethylene oligomerization ranges from ?10 to 19° C.
    Type: Application
    Filed: March 30, 2011
    Publication date: January 17, 2013
    Applicant: China Petroleum & Chemical Corporation
    Inventors: Mingfang Zheng, Weizhen Li, Huaijie Wang, Jun Liu, Haiying Zhang, Yu Zhou, Tonglin Li, Lan Zhao, Jilong Wang, Hongfei Wu, Yuling Piao, Junlong Sui