Patents by Inventor Weizhong Chen

Weizhong Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9177742
    Abstract: Modular switchgear and methods for manufacturing the same. The modular switchgear includes a vacuum interrupter assembly, a source conductor assembly, and a housing assembly. The vacuum interrupter assembly includes a bushing, a fitting, and a vacuum interrupter at least partially molded within the bushing and including a movable contact and a stationary contact. The source conductor assembly includes a bushing, a fitting, and a source conductor molded within the bushing. The housing assembly includes a housing defining a chamber and a drive shaft and conductor positioned within the chamber. The housing assembly also includes a first receptacle for receiving the fitting of the vacuum interrupter assembly and a second receptacle for receiving the fitting of the source conductor assembly. The vacuum interrupter assembly, the source conductor assembly, and the housing assembly are coupled without molding the assemblies within a common housing.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 3, 2015
    Assignee: G & W ELECTRIC COMPANY
    Inventors: Janet Ache, William Weizhong Chen, Kennedy Amoako Darko, Donald Richard Martin, Nenad Uzelac
  • Patent number: 8971451
    Abstract: According to one embodiment, an apparatus includes a digital signal processor configured to perform a multiple antenna detection portion of a baseband signal processing process using a first floating point processing unit, and perform all other portions of the baseband signal processing process using a half-precision floating point processing unit. The first floating point processing unit has a bit width that is larger than the bit width of the half-precision floating point processing unit.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 3, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventors: Weizhong Chen, Yuanbin Guo, Tong Sun
  • Publication number: 20140307756
    Abstract: The invention relates to an apparatus and method for measuring calorie in a beverage. The apparatus comprises a chamber, an information obtaining unit, a concentration measuring unit, a processing unit and a display screen. The chamber is configured to contain the beverage. The information obtaining unit is configured to obtain beverage information indicating the volume or the weight of the beverage. The concentration measuring unit configured to measure the concentration of a predetermined substance in the beverage. The processing unit is configured to calculate the overall calorie according to the volume or the weight of the beverage and the measured concentration of the predetermined substance. The display screen is configured to display the overall calorie.
    Type: Application
    Filed: November 2, 2012
    Publication date: October 16, 2014
    Inventors: Weizhong Chen, Bin Yin, Declan Patrick Kelly
  • Patent number: 8837572
    Abstract: A receiver and a method for equalizing signals, the method includes: receiving input signals; sampling the input signals to provide oversampled samples; processing the oversampled samples to provide symbol spaced samples and to provide fractionally spaced samples that represent the oversampled samples; calculating taps of a fractionally spaced equalizer based on the symbol spaced samples; feeding the taps to the fractionally spaced equalizer; and filtering the fractionally spaced samples by the fractionally spaced equalizer to provide equalized samples.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: September 16, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weizhong Chen, Noam Zach, Gideon Kutz
  • Publication number: 20140161210
    Abstract: According to one embodiment, an apparatus includes a digital signal processor configured to perform a multiple antenna detection portion of a baseband signal processing process using a first floating point processing unit, and perform all other portions of the baseband signal processing process using a half-precision floating point processing unit. The first floating point processing unit has a bit width that is larger than the bit width of the half-precision floating point processing unit.
    Type: Application
    Filed: December 11, 2012
    Publication date: June 12, 2014
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Weizhong Chen, Yuanbin Guo, Tong Sun
  • Publication number: 20140136582
    Abstract: A method for scaling a plurality of data values includes storing a first subset of data values of the plurality of data values into a first vector register, determining a maximum data value of the first subset of data values, and storing the greater of the maximum data value and a value stored in a scalar register to the scalar register. Each data value of the subset of data values is stored in a different element of the first vector register. The method further includes determining an adjustment factor based on the value stored in the scalar register and adjusting each data value of the plurality of data values by the adjustment factor.
    Type: Application
    Filed: November 12, 2012
    Publication date: May 15, 2014
    Applicant: Futurewei Technologies, Inc.
    Inventors: Weizhong Chen, Yuanpei Jiao, Tong Sun
  • Publication number: 20130282777
    Abstract: An embodiment of a system and method for performing a numerical operation on input data in a hybrid floating-point format includes representing input data as a sign bit, exponent bits, and mantissa bits. The exponent bits are represented as an unsigned integer including an exponent bias, and a signed numerical value of zero is represented as a first reserved combination of the mantissa bits and the exponent bits. Each of all other combinations of the mantissa bits and the exponent bits represents a real finite non-zero number. The mantissa bits are operated on with a “one” bit before a radix point for the all other combinations of the mantissa bits and the exponent bits.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 24, 2013
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Yuanbin Guo, Tong Sun, Weizhong Chen
  • Publication number: 20130282778
    Abstract: An embodiment of a method and a related apparatus for digital computation of a floating point complex multiply-add is provided. The method includes receiving an input addend, a first product, and a second product. The input addend, the first product and the second product each respectively has a mantissa and an exponent. The method includes shifting the mantissas of the two with smaller exponents of the input addend, the first product, and the second product to align together with the mantissa of the one with largest exponent of the input addend, the first product and the second product, and adding the aligned input addend, the aligned first product and the aligned second product.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 24, 2013
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Tong Sun, Weizhong Chen, Zhikun Cheng, Yuanbin Guo
  • Patent number: 8494102
    Abstract: Methods and corresponding systems for providing and demodulating an orthogonal modulated signal where demodulation includes separating a sampled orthogonal modulated signal into in phase and quadrature samples, deriving first and second equalizer coefficients based on corresponding in phase and quadrature samples and further, respectively, based on a first and second training sequence, programming a first plurality of equalizer filters with the first equalizer coefficients and a second plurality of equalizer filters with the second equalizer coefficients; and processing, after programming with first and second coefficients, the in phase samples and the quadrature samples through a first and second plurality of equalizer filters to provide demodulated symbols.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: July 23, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weizhong Chen, Leo G. Dehner
  • Publication number: 20130092658
    Abstract: Modular switchgear and methods for manufacturing the same. The modular switchgear includes a vacuum interrupter assembly, a source conductor assembly, and a housing assembly. The vacuum interrupter assembly includes a bushing, a fitting, and a vacuum interrupter at least partially molded within the bushing and including a movable contact and a stationary contact. The source conductor assembly includes a bushing, a fitting, and a source conductor molded within the bushing. The housing assembly includes a housing defining a chamber and a drive shaft and conductor positioned within the chamber. The housing assembly also includes a first receptacle for receiving the fitting of the vacuum interrupter assembly and a second receptacle for receiving the fitting of the source conductor assembly. The vacuum interrupter assembly, the source conductor assembly, and the housing assembly are coupled without molding the assemblies within a common housing.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 18, 2013
    Inventors: Janet Ache, William Weizhong Chen, Kennedy Amoako Darko, Donald Richard Martin, Nenad Uzelac
  • Publication number: 20120230386
    Abstract: A receiver and a method for equalizing signals, the method includes: receiving input signals; sampling the input signals to provide oversampled samples; processing the oversampled samples to provide symbol spaced samples and to provide fractionally spaced samples that represent the oversampled samples; calculating taps of a fractionally spaced equalizer based on the symbol spaced samples; feeding the taps to the fractionally spaced equalizer; and filtering the fractionally spaced samples by the fractionally spaced equalizer to provide equalized samples.
    Type: Application
    Filed: November 26, 2009
    Publication date: September 13, 2012
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Weizhong Chen, Noam Zach, Gideon Kutz
  • Publication number: 20120063503
    Abstract: Methods and corresponding systems for providing and demodulating an orthogonal modulated signal where demodulation includes separating a sampled orthogonal modulated signal into in phase and quadrature samples, deriving first and second equalizer coefficients based on corresponding in phase and quadrature samples and further, respectively, based on a first and second training sequence, programming a first plurality of equalizer filters with the first equalizer coefficients and a second plurality of equalizer filters with the second equalizer coefficients; and processing, after programming with first and second coefficients, the in phase samples and the quadrature samples through a first and second plurality of equalizer filters to provide demodulated symbols.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Inventors: Weizhong Chen, Leo G. Dehner
  • Patent number: 7936813
    Abstract: Method in a diversity antenna GMSK receiver of determining interference canceling equalizers and corresponding equalizers are described. The method includes providing a plurality of GMSK received signals; de-rotating and splitting each of the plurality of received signals into in phase and quadrature parts to provide a multiplicity of real valued branches; calculating linear equalizers for each of a multiplicity of subsets of the multiplicity of real valued branches; and providing an interference canceling equalizer for each of the multiplicity of real valued branches, each interference canceling equalizer corresponding to a weighted combination of the linear equalizers. A corresponding equalizer includes eight linear equalizers processing four branch signals corresponding to real (I) and quadrature (Q) parts of a GMSK diversity signal from two antennas.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: May 3, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Weizhong Chen
  • Patent number: 7912119
    Abstract: A method used in an adaptive survivor based channel equalizer, the method comprises selecting at a decision time a survivor in a Viterbi trellis and a corresponding equalizer, adaptively updating at the decision time the corresponding equalizer to define a new corresponding equalizer for use at a next decision time, retrieving the new corresponding equalizer as defined at an earlier decision time, and using the new corresponding equalizer as defined at an earlier decision time as an equalizer for other survivors in the Viterbi trellis at the next decision time. A corresponding adaptive survivor based channel equalizer includes a fixed pre-filter configured to provide a pre-filtered signal to a reduced state sequence estimator (RSSE) which is configured for providing recovered symbols. A coefficient adaptor is coupled to the RSSE and configured to essentially perform the method.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: March 22, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weizhong Chen, Leo G. Dehner
  • Patent number: 7907685
    Abstract: A GMSK receiver with interference cancellation includes a linear equalizer configured to be coupled to a received signal from a first antenna and to provide first soft bits, an adaptive estimator, e.g., adaptive MLSE coupled to the first soft bits and configured to provide second soft bits; a quality assessor coupled to the first soft bits and configured to provide a quality indication; and a switching function coupled to the linear equalizer and the adaptive MLSE and controlled in accordance with the quality indication to provide output soft bits corresponding to at least one of the first soft bits and the second soft bits. The GMSK receiver can be extended to multiple antennas and corresponding methods for interference cancellation in a GMSK signal are discussed.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: March 15, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Weizhong Chen
  • Patent number: 7852915
    Abstract: Adaptive equalizers for a communication channel and corresponding methods of equalizing are described. The adaptive equalizer includes: a fixed pre-filter configured to be coupled to a received signal and provide a pre-filter signal; an adaptive filter coupled to and configured to compensate the pre-filter signal for changes in phase and amplitude; and an interference remover coupled to the adaptive filter and configured to reduce interference in the received signal.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: December 14, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Weizhong Chen
  • Patent number: 7724816
    Abstract: In a GSM/EDGE Single Antenna Interference Cancellation (SAIC) operation environment, a mobile station is required to operate in a wide range of interference levels. An SAIC linear equalizer that takes advantage of the GMSK signal structure performs better than a conventional Maximum Likelihood Sequence Estimation (MLSE) equalizer in high interference levels, while it performs worse in low interference levels. A dynamic selection between the SAIC linear equalizer and the MLSE equalizer for each received burst is achieved to provide the optimal performance across the entire required operation environments. The dynamic selection is based on the estimated noise plus interference energy relative to the total received signal energy. The soft information calculated by the two categories of equalizers is properly scaled to generate soft information with balanced magnitude.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: May 25, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weizhong Chen, Leo G. Dehner
  • Patent number: 7697638
    Abstract: Blind modulation detection in a receiver of a wireless communication device calculates error energies for PSK and GMSK based on differences between a received training sequence signal and synthesized training signals generated from PSK and GMSK channel estimations and a known training sequence phase rotated by 3?/8 and ?/2 per symbol, respectively. A highly reliable modulation detection in a Single Antenna Interference Cancellation (SAIC) operational environment is achieved by a dual comparison of a total energy value of the received signal and the two error energies. PSK is determined if the PSK error energy value is found to be lower than both the GMSK error energy value and the total energy value by predetermined thresholds; otherwise the modulation type is determined to be GMSK.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: April 13, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weizhong Chen, Paul L. Russell, Jr.
  • Patent number: 7590419
    Abstract: A FCCH Burst detector includes a tone detection filter centered at 67.7 KHz, a tone rejection filter centered at ?67.7 KHz, moving average power calculation for the two filter outputs, and a detection logic. A FCCH burst is detected when the ratio of the moving average power of the tone detection filter output to that of the tone rejection filter output is larger than a threshold for a period longer than a threshold. The FB tone end time is detected when the ratio falls back to a threshold or the moving average power of the tone detection filter output falls below a threshold of the average power of the tone detection filter output over a predetermined period. The tone detection filter and the tone rejection filter is implemented by first frequency-shifting the received signal by ?67.7 KHz and +67.7 KHz in parallel, then passing the two frequency-shifted signals through two separate low-pass filters.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: September 15, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Weizhong Chen
  • Patent number: 7539272
    Abstract: Different from conventional equalizers, the output of an SAIC (Single Antenna Interference Cancellation) linear equalizer in GSM/EDGE wireless communication systems is a real signal combined from two real FIR (Finite Impulse Response) filter outputs. Each of the FIRs separately uses the real and imaginary components of the ½ ? de-rotated received signal as input. The real-valued output of the SAIC equalizer creates difficulty to estimate and correct the frequency errors due to receiver LO and Doppler shift. Disclosed is an efficient and effective solution to the estimation and correction of the frequency error through an assistant signal generated by two additional FIR filters. The assistant signal and the SAIC equalizer output are used to estimate the frequency error, which is combined with the SAIC equalizer output and the assistant signal to give the frequency error corrected SAIC equalizer output.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: May 26, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weizhong Chen, Clark H. Jarvis