Patents by Inventor Weizhong Yan
Weizhong Yan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11005870Abstract: Systems and methods may be associated with a cyber-physical system, and a blueprint repository data store may contain electronic files that represent behavior-based asset monitoring parameters for different cyber-physical system asset types. A behavior-based asset monitoring creation computer platform may receive an indication of an asset type of the cyber-physical system. The behavior-based asset monitoring creation computer platform may then search the blueprint repository data store and retrieve an electronic file representing behavior-based asset monitoring parameters for the asset type of the cyber-physical system to be monitored. The behavior-based asset monitoring creation computer platform may also receive, from the remote operator device, adjustments to the retrieved behavior-based asset monitoring parameters and automatically configure, based on the adjusted behavior-based asset monitoring parameters, at least a portion of settings for an abnormal detection model.Type: GrantFiled: November 27, 2018Date of Patent: May 11, 2021Assignee: General Electric CompanyInventors: Weizhong Yan, Masoud Abbaszadeh, Matthew Nielsen, Justin Varkey John
-
Patent number: 10990668Abstract: Monitoring nodes may generate a series of current monitoring node values over time representing current operation of a cyber-physical system. A decision fusion computer platform may receive, from a local status determination module, an indication of whether each node has an initial local status of “normal”/“abnormal” and a local certainty score (with higher values of the local certainty score representing greater likelihood of abnormality). The computer platform may also receive, from a global status determination module, an indication of whether the system has an initial global status of “normal”/“abnormal” and a global certainty score. The computer platform may output, for each node, a fused local status of “normal” or “abnormal,” at least one fused local status being based on the initial global status. The decision fusion computer platform may also output a fused global status of “normal” or “abnormal” based on at least one initial local status.Type: GrantFiled: September 17, 2018Date of Patent: April 27, 2021Assignee: General Electric CompanyInventors: Masoud Abbaszadeh, Walter Yund, Weizhong Yan
-
Publication number: 20210088563Abstract: Briefly, embodiments are directed to a system, method, and article for identifying power system event signatures. Input measurement data may be received from one or more data sources relating to a power grid system. The input measurement data may comprise normal system operation measurement data and power system event measurement data. A processor may perform operations during an online application phase. During the online application phase, a feature matrix may be generated for the power system event measurement data and the at least one trained auto-associative model. The feature matrix for the power system event measurement data may be processed to determine power system event residuals. Also during the online application phase, the power system event signatures may be identified based on residual statistics for normal system operation measurement data residuals and on the power system event residuals.Type: ApplicationFiled: September 24, 2019Publication date: March 25, 2021Inventors: Weizhong Yan, Honggang Wang
-
Patent number: 10956578Abstract: According to some embodiments, a system, method and non-transitory computer-readable medium are provided to protect a decision manifold of a control system for an industrial asset, comprising: a detection and neutralization module including: a decision manifold having a receiver configured to receive a training dataset comprising data, wherein the decision manifold is operative to generate a first decision manifold with the received training dataset; and a detection model; a memory for storing program instructions; and a detection and neutralization processor, coupled to the memory, and in communication with the detection and neutralization module and operative to execute program instructions to: receive the first decision manifold, wherein the first decision manifold separates a normal operating space from an abnormal operating space; determine whether there are one or more inadequacies with the detection model; generate a corrected decision manifold based on the determined one or more inadequacies with theType: GrantFiled: October 5, 2018Date of Patent: March 23, 2021Assignee: GENERAL ELECTRIC COMPANYInventors: Hema Achanta, Lalit Keshav Mestha, Weizhong Yan
-
Publication number: 20210072740Abstract: According to embodiments, a system, method and non-transitory computer-readable medium are provided to receive time series data associated with one or more sensors values of a piece of machinery at a first time period, perform a non-linear transformation on the time-series data to produce one or more nonlinear temporal embedding outputs, and projecting each of the nonlinear temporal embedding outputs to a different dimension space to identify at least one causal relationship in the nonlinear temporal embedding outputs. The nonlinear embeddings are further projected to the original dimension space to produce one or more causality learning outputs. Nonlinear dimensional reduction is performed on the one or more causality learning outputs to produce reduced dimension causality learning outputs. The learning outputs are mapped to one or more predicted outputs which include a prediction of one or more of the sensor values at a second time period.Type: ApplicationFiled: September 9, 2019Publication date: March 11, 2021Inventors: Hao HUANG, Feng XUE, Weizhong YAN
-
Patent number: 10928811Abstract: According to some embodiments, a system and method are provided to model a sparse data asset. The system comprises a processor and a non-transitory computer-readable medium comprising instructions that when executed by the processor perform a method to model a sparse data asset. Relevant data and operational data associated with the newly operational are received. A transfer model based on the relevant data and the received operational data. An input into the transfer model is received and a predication based on data associated with the received operational data and the relevant data is output.Type: GrantFiled: October 25, 2017Date of Patent: February 23, 2021Assignee: General Electric CompanyInventors: Fuxiao Xin, Larry Swanson, Rui Xu, Morgan Salter, Achalesh Pandey, Ramu Chandra, Weizhong Yan
-
Publication number: 20210037044Abstract: According to some embodiments, a system, method and non-transitory computer-readable medium are provided to protect a cyber-physical system having a plurality of monitoring nodes comprising: a normal space data source storing, for each of the plurality of monitoring nodes, a series of normal monitoring node values over time that represent normal operation of the cyber-physical system; a situational awareness module including an abnormal data generation platform, wherein the abnormal data generation platform is operative to generate abnormal data to represent abnormal operation of the cyber-physical system using values in the normal space data source and a generative model; a memory for storing program instructions; and a situational awareness processor, coupled to the memory, and in communication with the situational awareness module and operative to execute the program instructions to: receive a data signal, wherein the received data signal is an aggregation of data signals received from one or more of the pType: ApplicationFiled: July 30, 2019Publication date: February 4, 2021Inventors: Hema K, Achanta, Masoud ABBASZADEH, Weizhong YAN, Mustafa Tekin DOKUCU
-
Publication number: 20200327205Abstract: A system for enhanced sequential power system model calibration is provided. The system is programmed to store a model of a device. The model includes a plurality of parameters. The system is also programmed to receive a plurality of events associated with the device, receive a first set of calibration values for the plurality of parameters, generate a plurality of sets of calibration values for the plurality of parameters, for each of the plurality of sets of calibration values, analyze a first event of the plurality of events using a corresponding set of calibration values to generate a plurality of updated sets of calibration values, analyze the plurality of updated sets of calibration values to determine a current updated set of calibration values, and update the model to include the current updated set of calibration values.Type: ApplicationFiled: October 15, 2019Publication date: October 15, 2020Inventors: Honggang Wang, Weizhong Yan, Kaveri Mahapatra
-
Publication number: 20200322366Abstract: A Cyber-Physical System (“CPS”) may have monitoring nodes that generate a series of current monitoring node values representing current operation of the CPS. A normal space data source may store, for each monitoring node, a series of normal monitoring node values representing normal operation of the CPS. An abnormal data generation platform may utilize information in the normal space data source and a generative model to create generated abnormal to represent abnormal operation of the CPS. An abnormality detection model creation computer may receive the normal monitoring node values (and generate normal feature vectors) and automatically calculate and output an abnormality detection model including information about a decision boundary created via supervised learning based on the normal feature vectors and the generated abnormal data.Type: ApplicationFiled: April 3, 2019Publication date: October 8, 2020Inventors: Weizhong YAN, Masoud ABBASZADEH
-
Publication number: 20200292608Abstract: Briefly, embodiments are directed to a system, method, and article for monitoring and diagnosing a status of one or more assets of a power grid system. Input data measurements and training data measurements from one or more data sources relating to the power grid system may be accessed or received. An offline training phase and an online monitoring and diagnosis phase may be performed. During the offline training phase, first features may be extracted from the training measurement data, one or more residual generation models may be trained using the extracted features as model inputs, and one or more residual-based classifiers may be trained.Type: ApplicationFiled: September 6, 2019Publication date: September 17, 2020Inventors: Weizhong YAN, Honggang WANG, Lijun HE
-
Publication number: 20200293033Abstract: Briefly, embodiments are directed to a system, method, and article for monitoring health of a power system. Input data may be received from one or more sources, where the input data comprises at least measurements of one or more power system assets from one or more phasor measurement units (PMUs). An anomaly may be detected within the power system based on the input data. A determination may be made as to whether the anomaly comprises an asset anomaly of the one or more power system assets. In response to determining that the anomaly comprises an asset anomaly, a characterization may be made as to whether the asset anomaly comprises an equipment anomaly or a sensor anomaly and an alert may be generated to indicate whether the asset anomaly comprises the equipment anomaly or the sensor anomaly based on the characterization.Type: ApplicationFiled: September 6, 2019Publication date: September 17, 2020Inventors: Lijun HE, Honggang WANG, Weizhong YAN, Liwei HAO
-
Publication number: 20200293032Abstract: embodiments are directed to a system, method, and article for monitoring a power substation asset. During an offline analysis mode, training data may be acquired and processing, and one or more classifiers may be generated for an online anomaly detection and localization mode. During the online anomaly detection and localization mode, power system related data may be received from field devices, a state of a substation system and of the power substation asset component and an unclassified state of one or instances may be generated based on the one or more classifiers. An alert may be generated to indicate the state of the substation system and of the power substation asset.Type: ApplicationFiled: September 6, 2019Publication date: September 17, 2020Inventors: Honggang Wang, Weizhong Yan, Lijun He, Liwei Hao
-
Patent number: 10686806Abstract: According to some embodiments, a plurality of monitoring nodes may each generate a series of current monitoring node values over time that represent a current operation of the industrial asset. A node classifier computer, coupled to the plurality of monitoring nodes, may receive the series of current monitoring node values and generate a set of current feature vectors. The node classifier computer may also access at least one multi-class classifier model having at least one decision boundary. The at least one multi-class classifier model may be executed and the system may transmit a classification result based on the set of current feature vectors and the at least one decision boundary. The classification result may indicate, for example, whether a monitoring node status is normal, attacked, or faulty.Type: GrantFiled: August 21, 2017Date of Patent: June 16, 2020Assignee: General Electric CompanyInventors: Masoud Abbaszadeh, Lalit Keshav Mestha, Weizhong Yan
-
Publication number: 20200169574Abstract: Systems and methods may be associated with a cyber-physical system, and a blueprint repository data store may contain electronic files that represent behavior-based asset monitoring parameters for different cyber-physical system asset types. A behavior-based asset monitoring creation computer platform may receive an indication of an asset type of the cyber-physical system. The behavior-based asset monitoring creation computer platform may then search the blueprint repository data store and retrieve an electronic file representing behavior-based asset monitoring parameters for the asset type of the cyber-physical system to be monitored. The behavior-based asset monitoring creation computer platform may also receive, from the remote operator device, adjustments to the retrieved behavior-based asset monitoring parameters and automatically configure, based on the adjusted behavior-based asset monitoring parameters, at least a portion of settings for an abnormal detection model.Type: ApplicationFiled: November 27, 2018Publication date: May 28, 2020Inventors: Weizhong YAN, Masoud ABBASZADEH, Matthew NIELSEN, Justin Varkey JOHN
-
Publication number: 20200110881Abstract: According to some embodiments, a system, method and non-transitory computer-readable medium are provided to protect a decision manifold of a control system for an industrial asset, comprising: a detection and neutralization module including: a decision manifold having a receiver configured to receive a training dataset comprising data, wherein the decision manifold is operative to generate a first decision manifold with the received training dataset; and a detection model; a memory for storing program instructions; and a detection and neutralization processor, coupled to the memory, and in communication with the detection and neutralization module and operative to execute program instructions to: receive the first decision manifold, wherein the first decision manifold separates a normal operating space from an abnormal operating space; determine whether there are one or more inadequacies with the detection model; generate a corrected decision manifold based on the determined one or more inadequacies with theType: ApplicationFiled: October 5, 2018Publication date: April 9, 2020Inventors: Hema ACHANTA, Lalit Keshav MESTHA, Weizhong YAN
-
Publication number: 20200089874Abstract: Monitoring nodes may generate a series of current monitoring node values over time representing current operation of a cyber-physical system. A decision fusion computer platform may receive, from a local status determination module, an indication of whether each node has an initial local status of “normal”/“abnormal” and a local certainty score (with higher values of the local certainty score representing greater likelihood of abnormality). The computer platform may also receive, from a global status determination module, an indication of whether the system has an initial global status of “normal”/“abnormal” and a global certainty score. The computer platform may output, for each node, a fused local status of “normal” or “abnormal,” at least one fused local status being based on the initial global status. The decision fusion computer platform may also output a fused global status of “normal” or “abnormal” based on at least one initial local status.Type: ApplicationFiled: September 17, 2018Publication date: March 19, 2020Inventors: Masoud ABBASZADEH, Walter YUND, Weizhong YAN
-
Patent number: 10594712Abstract: A threat detection model creation computer receives normal monitoring node values and abnormal monitoring node values. At least some received monitoring node values may be processed with a deep learning model to determine parameters of the deep learning model (e.g., a weight matrix and affine terms). The parameters of the deep learning model and received monitoring node values may then be used to compute feature vectors. The feature vectors may be spatial along a plurality of monitoring nodes. At least one decision boundary for a threat detection model may be automatically calculated based on the computed feature vectors, and the system may output the decision boundary separating a normal state from an abnormal state for that monitoring node. The decision boundary may also be obtained by combining feature vectors from multiple nodes. The decision boundary may then be used to detect normal and abnormal operation of an industrial asset.Type: GrantFiled: April 11, 2017Date of Patent: March 17, 2020Assignee: General Electric CompanyInventors: Lalit Keshav Mestha, Justin Varkey John, Weizhong Yan, David Joseph Hartman
-
Patent number: 10452845Abstract: According to some embodiments, a plurality of heterogeneous data source nodes may each generate a series of current data source node values over time that represent a current operation of an electric power grid. A real-time threat detection computer, coupled to the plurality of heterogeneous data source nodes, may receive the series of current data source node values and generate a set of current feature vectors. The threat detection computer may then access an abnormal state detection model having at least one decision boundary created offline using at least one of normal and abnormal feature vectors. The abnormal state detection model may be executed, and a threat alert signal may be transmitted if appropriate based on the set of current feature vectors and the at least one decision boundary.Type: GrantFiled: March 8, 2017Date of Patent: October 22, 2019Assignee: GENERAL ELECTRIC COMPANYInventors: Lalit Keshav Mestha, Santosh Sambamoorthy Veda, Masoud Abbaszadeh, Chaitanya Ashok Baone, Weizhong Yan, Saikat Ray Majumder, Sumit Bose, Annartia Giani, Olugbenga Anubi
-
Publication number: 20190228110Abstract: A data source may provide a plurality of time-series measurements that represent normal operation of a cyber-physical system (e.g., in substantially real-time during online operation of the cyber-physical system). A stateful, nonlinear embedding computer may receive the plurality of time-series measurements and execute stateful, nonlinear embedding to project the plurality of time-series measurements to a lower-dimensional latent variable space. In this way, redundant and irrelevant information may be reduced, and temporal and spatial dependence among the measurements may be captured. The output of the stateful, nonlinear embedding may be utilized to automatically identify underlying system characteristics of the cyber-physical system. In some embodiments, a stateful generative adversarial network may be used to achieve stateful embedding.Type: ApplicationFiled: June 26, 2018Publication date: July 25, 2019Inventors: Weizhong YAN, Lalit Keshav MESTHA
-
Publication number: 20190219994Abstract: Heterogeneous monitoring nodes may each generate a series of monitoring node values over time associated with operation of an industrial asset. An offline abnormal state detection model creation computer may receive the series of monitoring node values and perform a feature extraction process using a multi-modal, multi-disciplinary framework to generate an initial set of feature vectors. The model creation computer may then perform feature dimensionality reduction to generate a selected feature vector subset. The model creation computer may derive digital models through a data-driven machine learning modeling method, based on input/output variables identified by domain experts or by learning from the data. The system may then automatically generate domain level features based on a difference between sensor measurements and digital model output.Type: ApplicationFiled: May 21, 2018Publication date: July 18, 2019Inventors: Weizhong YAN, Lalit Keshav MESTHA, Daniel Francis HOLZHAUER