Patents by Inventor Weldon Hall

Weldon Hall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11896792
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: February 13, 2024
    Assignee: One Drop Biosensor Technologies, LLC
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 11896793
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: February 13, 2024
    Assignee: One Drop Biosensor Technologies, LLC
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 11865289
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: January 9, 2024
    Assignee: One Drop Biosensor Technologies, LLC
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 11819650
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: November 21, 2023
    Assignee: One Drop Biosensor Technologies, LLC
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20220054814
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: November 4, 2021
    Publication date: February 24, 2022
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20220054813
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 11197985
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: December 14, 2021
    Assignee: One Drop Biosensor Technologies, LLC
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 11123532
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: September 21, 2021
    Assignee: ONE DROP BIOSENSOR TECHNOLOGIES, LLC
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20210100504
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: December 17, 2020
    Publication date: April 8, 2021
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20210100505
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: December 17, 2020
    Publication date: April 8, 2021
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20200405234
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 31, 2020
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20200121902
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 10549080
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: February 4, 2020
    Assignee: Sano Intelligence, Inc.
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 10173042
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: January 8, 2019
    Assignee: Sano Intelligence, Inc.
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20170095652
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: December 15, 2016
    Publication date: April 6, 2017
    Applicant: Sano Intelligence, Inc.
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20170086724
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: December 13, 2016
    Publication date: March 30, 2017
    Applicant: Sano Intelligence, Inc.
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20160022187
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: October 6, 2015
    Publication date: January 28, 2016
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 9182368
    Abstract: A method of manufacturing a sensor for sensing analytes, the method including: with a dicing saw, removing material from a substrate, thereby forming an array of columnar protrusions at a first surface of the substrate; forming an insulating layer coupled to exposed surfaces of the substrate and exposed surfaces of the array of columnar protrusions; removing a portion of the insulating layer at a second surface of the substrate, directly opposed to the first surface of the substrate; with the dicing saw, removing material from a distal end of each columnar protrusion in the array of columnar protrusions, thereby defining a sharp tip, uncovered by the insulating layer, at the distal end of each columnar protrusion in the array of columnar protrusions; and coupling a conductive layer to the sharp tip of each columnar protrusion in the array of columnar protrusions.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 10, 2015
    Assignee: Sano Intelligence, Inc.
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 9008745
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: April 14, 2015
    Assignee: Sano Intelligence, Inc.
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Publication number: 20140275897
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Sano Intelligence, Inc.
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi