Patents by Inventor Weldon K. Bell

Weldon K. Bell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7419928
    Abstract: A process for enhancing the activity of a catalyst metal particulate for hydrogenation reactions comprising calcining the particulate in an oxidant-containing atmosphere to partially oxidize it thereby forming a porous layer of oxides thereon, treating with an solution capable of oxidizing the calcined metal particulate and comprising a compound of a hydrogenation catalyst metal to where said metal particulate has absorbed a volume of solution equal to at least about 10% of its calculated pore volume and activating it by treatment with a hydrogen-containing gas at elevated temperatures thereby forming a dispersed active metal catalyst. Preferably, the treated particulate is calcined a second time under the same conditions as the first before final activation with a hydrogen-containing gas. The metal particulate is preferably sized after each calcination and any agglomerates larger than 250 microns are comminuted to a desired size.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: September 2, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andrzej M. Malek, Stephen C. Leviness, Horacio M. Trevino, Weldon K. Bell, David O. Marler
  • Patent number: 7361619
    Abstract: Dispersed Active Metal catalyst for hydrogenation reactions is produced by treating a substantially catalytically inactive metal particulate with a solution capable of oxidizing the metal particulate and comprising of at least one compound of a hydrogenation catalyst metal thereby forming a layer of at least one of hydroxides and oxides thereon. The metal particulate is activated by treatment with a hydrogen-containing gas at elevated temperatures to form a porous layer of Dispersed Active Metal catalyst. Preferably, the treated metal particulate is dried prior to activation, and also preferably calcined in an oxidant-containing atmosphere prior to activation. The treatment solution may advantageously contain a compound of at least one promoter metal for the added catalyst metal. The porosity of the layer provides enhanced catalyst activity as well as improved methane selectivity in the Fischer-Tropsch process.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: April 22, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andrzej M. Malek, Stephen C. Leviness, Horacio M. Trevino, Weldon K. Bell, David O. Marler
  • Publication number: 20040204505
    Abstract: Dispersed Active Metal catalyst for hydrogenation reactions is produced by treating a substantially catalytically inactive metal particulate with a solution capable of oxidizing the metal particulate and comprising of at least one compound of a hydrogenation catalyst metal thereby forming a layer of at least one of hydroxides and oxides thereon. The metal particulate is activated by treatment with a hydrogen-containing gas at elevated temperatures to form a porous layer of Dispersed Active Metal catalyst. Preferably, the treated metal particulate is dried prior to activation, and also preferably calcined in an oxidant-containing atmosphere prior to activation. The treatment solution may advantageously contain a compound of at least one promoter metal for the added catalyst metal. The porosity of the layer provides enhanced catalyst activity as well as improved methane selectivity in the Fischer-Tropsch process.
    Type: Application
    Filed: April 6, 2004
    Publication date: October 14, 2004
    Inventors: Andrzej M. Malek, Stephen C. Leviness, Horacio M. Trevino, Weldon K. Bell, David O. Marler
  • Publication number: 20040204504
    Abstract: A process for enhancing the activity of a catalyst metal particulate for hydrogenation reactions comprising calcining the particulate in an oxidant-containing atmosphere to partially oxidize it thereby forming a porous layer of oxides thereon, treating with an solution capable of oxidizing the calcined metal particulate and comprising a compound of a hydrogenation catalyst metal to where said metal particulate has absorbed a volume of solution equal to at least about 10% of its calculated pore volume and activating it by treatment with a hydrogen-containing gas at elevated temperatures thereby forming a dispersed active metal catalyst. Preferably, the treated particulate is calcined a second time under the same conditions as the first before final activation with a hydrogen-containing gas. The metal particulate is preferably sized after each calcination and any agglomerates larger than 250 microns are comminuted to a desired size.
    Type: Application
    Filed: April 6, 2004
    Publication date: October 14, 2004
    Inventors: Andrzej M. Malek, Stephen C. Leviness, Horacio M. Trevino, Weldon K. Bell, David O. Marler
  • Patent number: 5714640
    Abstract: A condensation reaction process and reactor for converting a plurality of reactants to at least one reaction product having a vapor pressure less than the vapor pressure of the reactants. The process includes heating a liquid phase of the reactants to at least partial vaporization thus forming a vapor phase of the reactants. The vapor phase reactants are passed in a vapor and or condensed state through at least one catalyst bed spaced from the liquid state to form reaction product(s). The reaction product(s) is returned to the liquid phase without additional contact with catalyst.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: February 3, 1998
    Assignee: Mobil Oil Corporation
    Inventors: Weldon K. Bell, Stephen H. Brown, Frederick E. Daugherty, Mohsen N. Harandi, Jeffrey C. Trewella
  • Patent number: 5569789
    Abstract: A multistaged fixed catalyst bed process for the production of diisopropyl ether and isopropanol is disclosed comprising a fixed bed of serially connected stages containing zeolite Beta catalyst. A feedstream of propylene and water equivalents selected from the group consisting of water, isopropanol and diisopropyl ether is introduced into each stage at a rate sufficient to provide a mole ratio of water equivalents to propylene equivalents that increases in increments by stage from at least 0.1 in a first stage to at most 1.2 in a final stage. The feedstream is introduced at a temperature between 50.degree. and 450.degree. C., pressure between 700 and 24000 kPa, and weight hourly space velocity between 0.10 and 30, based on catalyst, whereby a single non-aqueous liquid phase is maintained in the fixed bed. An effluent product stream is recovered comprising diisopropyl ether, isopropanol and water from the final stage. Isopropanol is recycled to the first stage when the preferred product is diisopropyl ether.
    Type: Grant
    Filed: August 2, 1995
    Date of Patent: October 29, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Weldon K. Bell, Stephen H. Brown, Jeffrey C. Trewella
  • Patent number: 5481057
    Abstract: A process for catalytic cracking and C3/C4 olefin alkylation with phosphorus stabilized faujasite catalyst is disclosed. Catalytic cracking produces C3 and C4 olefins, which are alkylated using phosphorus stabilized and water activated cracking catalyst. Spent alkylation catalyst may be discharged into the FCC unit.
    Type: Grant
    Filed: March 25, 1994
    Date of Patent: January 2, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Weldon K. Bell, Tracy J. Huang, Rudolph M. Lago, Ying-Yen P. Tsao, D. Duayne Whitehurst
  • Patent number: 5414146
    Abstract: Porous metallosilicate catalyst (e.g. Zeolite Beta) is active at low temperature for converting lower alkanol (e.g. methanol) and C.sub.4 -C.sub.7 tertiary alkenes to high octane ether product. Such catalytic reaction is especially useful in multizone catalytic reactor systems employing catstill rectification.
    Type: Grant
    Filed: August 23, 1993
    Date of Patent: May 9, 1995
    Assignee: Mobil Oil Corporation
    Inventors: Weldon K. Bell, Steven H. Brown, Mohsen N. Harandi, Jeffrey C. Trewella
  • Patent number: 5405814
    Abstract: An olefin hydration catalyst is regenerated with a non-oxidizing light gas, such as hydrogen. Light olefins, especially propylene, are converted to a mixture of alcohol(s), such as isopropanol (IPA) and ether(s), such as diisopropylether (DIPE) by contacting a feed containing the olefin with water and/or alcohol with the olefin hydration catalyst. Regeneration conditions include temperatures of from about 150.degree. C. to about 550.degree. C., pressures below about 1000 psig (6900 kPa). Lower pressures of regeneration unexpectedly demonstrated more effective catalyst regeneration through greater coke removal.
    Type: Grant
    Filed: June 7, 1993
    Date of Patent: April 11, 1995
    Assignee: Mobil Oil Corporation
    Inventors: James H. Beech, Jr., Weldon K. Bell, W. Thomas Mo, Hye Kyung C. Timken, Robert A. Ware
  • Patent number: 5292880
    Abstract: A process for catalytically converting cyclohexanone oxime to epsilon caprolactam. The conversion catalyst is a crystalline aluminosilicate zeolite having a Constraint Index greater than 1 and a reduced surface acidity. The surface acidity is reduced by selective surface dealumination of the crystalline aluminosilicate zeolite by contacting the zeolite with dicarboxylic acid, such as oxalic acid.
    Type: Grant
    Filed: March 12, 1993
    Date of Patent: March 8, 1994
    Assignee: Mobil Oil Corporation
    Inventors: Minas R. Apelian, Weldon K. Bell, Anthony S. Fung, Werner O. Haag, Chaya Venkat
  • Patent number: 5225609
    Abstract: A process is disclosed for the production of alkyl tertiary alkyl ether from alkanol and iso-olefin employing zeolite catalyst, particularly zeolite Beta, that results is a high ether selectivity and a significant reduction in the formation of olefin oligomer by-product. The improvement is realized by incorporating a catalyst pretreatment step in the overall etherification process. The zeolite catalyst pretreatment comprises either steaming or a hydrothermal treatment using liquid water at elevated temperature. The process is particularly effective in reducing the formation of dimer by-product in the zeolite Beta catalyzed process for the formation of MTBE with high selectivity.
    Type: Grant
    Filed: December 17, 1991
    Date of Patent: July 6, 1993
    Assignee: Mobil Oil Corporation
    Inventors: Weldon K. Bell, Werner O. Haag
  • Patent number: 5144086
    Abstract: A process for synthesizing di-isopropyl ether (DIPE) by etherification of isopropanol. A multi-stage process can employ propene in mixture with other feedstock materials, such as propane from refinery gas, in a primary hydration stage to produce isopropanol. The isopropanol is enriched between stages to remove water. In the second reaction stage the isopropanol is converted catalytically with large pore acidic zeolite to yield DIPE, which can be separated to recover pure propene.
    Type: Grant
    Filed: May 6, 1991
    Date of Patent: September 1, 1992
    Assignee: Mobil Oil Corporation
    Inventors: Mohsen N. Harandi, Werner O. Haag, Hartley Owen, Weldon K. Bell
  • Patent number: 5013329
    Abstract: A process is disclosed for converting a light hydrocarbon feedstock that contains a mixture of linear and branched olefins to ether-rich high octane gasoline streams that include tertiary alkyl and isoalkyl ethers such as MTBE, TAME, methyl isopropyl ether (MIPE), and methyl sec-butylether (MSBE). The conversion is achieved by utilizing the differing reactivity of tertiary olefins under selected conditions compared to linear olefins in the catalyzed etherification processes. The discovery has been made that unreacted olefins from the etherification reactions can be converted to gasoline boiling range hydrocarbons by contacting them with zeolite catalyst at elevated temperature. Further, it has been discovered that unreacted paraffins in the integrated process can be dehydrogenated to produce C.sub.3 -C.sub.4 olefins which can be recycled to the etherification process.
    Type: Grant
    Filed: March 31, 1989
    Date of Patent: May 7, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Weldon K. Bell, Werner O. Haag, Mohsen N. Harandi, Hartley Owen
  • Patent number: 4994428
    Abstract: A novel Fischer Tropsch iron catalyst that has unusually high selectivity for liquid hydrocarbons (low selectivity for methane) is provided. The catalyst is prepared by treatment of the usual inactive catalyst precursor with water vapor at elevated temperature either after conventional activation by syngas or concurrently therewith. Surprisingly, the "selectivation" with water vapor does not affect catalytic activity. The novel "selectivated" catalyst may be used to advantage either to increase temperature and throughput, or to increase liquid hydrocarbon selectivity, compared with conventional catalyst that has not been "selectivated".
    Type: Grant
    Filed: March 17, 1989
    Date of Patent: February 19, 1991
    Assignee: Mobil Oil Corp.
    Inventors: Weldon K. Bell, Werner O. Haag
  • Patent number: 4978689
    Abstract: The medium pressure Fischer-Tropsch synthesis of liquid hydrocarbons conducted with an iron catalyst is made more efficient by temporarily suspending conventional synthesis and treating the catalyst with a high partial pressure of water vapor, after which conventional synthesis is resumed. The treatment inparts a large increase in selectivity for liquids with reduction of methane formation. The treatment is very effective with alkali (e.g. potassium) promoted precipitated iron catalyst.
    Type: Grant
    Filed: March 17, 1989
    Date of Patent: December 18, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Weldon K. Bell, Werner O. Haag
  • Patent number: 4963340
    Abstract: There is provided a process for converting methane to carbon disulfide. More particularly, methane is decomposed to form elemental carbon and elemental hydrogen, and the elemental carbon is reacted with sulfur to form carbon disulfide. Carbon disulfide may then be contacted with hydrogen, optionally in the presence of more methane, under conditions sufficient to produce CH.sub.3 SH. This CH.sub.3 SH may then be contacted with a sufficient catalyst, such as a zeolite, especially ZSM-5, under conditions sufficient to produce hydrocarbon having two or more carbon atoms.
    Type: Grant
    Filed: January 30, 1990
    Date of Patent: October 16, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Costandi A. Audeh, Weldon K. Bell
  • Patent number: 4962239
    Abstract: Olefin is etherified with alcohol to provide an ether or mixture of ethers employing catalyst comprising zeolite characterized by an X-ray diffraction pattern including interplanar d-spacings at 12.36+0.4, 11.03+0.2, 8.83.+-.0.14, 6.18.+-.0.12, 6.00.+-.0.10, 4.06.+-.0.07, 3.91.+-.0.07 and 3.42.+-.0.06 Angstroms.
    Type: Grant
    Filed: December 26, 1989
    Date of Patent: October 9, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Weldon K. Bell, Werner O. Haag, David O. Marler
  • Patent number: 4927924
    Abstract: A process is provided for catalytically converting cyclohexanone oxime to epsilon caprolactam. The conversion is characterized by exceptionally high selectivity and reduced rate of catalyst aging, even at single pass conversion above 90 percent. The conversion catalyst is a medium pore size crystalline zeolite exemplified by ZSM-5 which has low acid activity. Recycling unconverted oxime provides excellent ultimate yield of caprolactam.
    Type: Grant
    Filed: April 14, 1989
    Date of Patent: May 22, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Weldon K. Bell, Werner O. Haag
  • Patent number: 4822938
    Abstract: There is provided a process for converting methane to higher molecular weight hydrocarbons. In a first step, methane is contacted with elemental sulfur under conditions sufficient to produce carbon disulfide. Carbon disulfide from this step is then contacted with methane and hydrogen under conditions sufficient to convert methane and to produce CH.sub.3 SH. This CH.sub.3 SH is then contacted with a sufficient catalyst, such as a zeolite, especially ZSM-5, under conditions sufficient to produce hydrocarbons having two or more carbon atoms.
    Type: Grant
    Filed: May 3, 1988
    Date of Patent: April 18, 1989
    Assignee: Mobil Oil Corporation
    Inventors: Costandi A. Audeh, Weldon K. Bell, Scott Han, Robert E. Palermo
  • Patent number: 4714787
    Abstract: A catalytic process is provided for the manufacture of ethers by reacting a linear monoolefin with a primary or secondary alcohol having up to 4 carbon atoms. The process selectively forms methyl isopropyl ether from a propylene feed and methanol by contact with a zeolite such as Zeolite Beta or ZSM-5, or by contact with a macroreticular sulfonated ion-exchange resin.
    Type: Grant
    Filed: September 3, 1985
    Date of Patent: December 22, 1987
    Assignee: Mobil Oil Corporation
    Inventors: Weldon K. Bell, Werner O. Haag