Patents by Inventor Wen-Ching Hsiung

Wen-Ching Hsiung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8395869
    Abstract: ESD protection circuit with EOS immunity is provided, which includes a first connection circuit, a first EOS control circuit formed by at least a diode, and an ESD clamp respectively coupled between a pad, a first clamp node, an I/O clamp node and a second source node. When the ESD clamp detects ESD through the I/O clamp node, it is triggered to conduct from the I/O clamp node to the second source node. When the pad receives EOS, the first EOS control circuit provides a cross voltage between the first clamp node and the I/O clamp node, such that a voltage of the I/O clamp node becomes less than a characteristic voltage of the ESD clamp to prevent the ESD clamp from reverse conducting.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 12, 2013
    Assignee: Faraday Technology Corp.
    Inventors: Fu-Yi Tsai, Po-Chun Hsieh, Wen-Ching Hsiung
  • Publication number: 20120154960
    Abstract: ESD protection circuit with EOS immunity is provided, which includes a first connection circuit, a first EOS control circuit formed by at least a diode, and an ESD clamp respectively coupled between a pad, a first clamp node, an I/O clamp node and a second source node. When the ESD clamp detects ESD through the I/O clamp node, it is triggered to conduct from the I/O clamp node to the second source node. When the pad receives EOS, the first EOS control circuit provides a cross voltage between the first clamp node and the I/O clamp node, such that a voltage of the I/O clamp node becomes less than a characteristic voltage of the ESD clamp to prevent the ESD clamp from reverse conducting.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 21, 2012
    Applicant: FARADAY TECHNOLOGY CORPORATION
    Inventors: Fu-Yi Tsai, Po-Chun Hsieh, Wen-Ching Hsiung
  • Patent number: 7825697
    Abstract: A signal detection circuit is used for detecting signal squelch of a differential input signal to generate a corresponding digital output signal. The signal detection circuit includes: a reference voltage generator for generating a reference voltage of which the common mode voltage tracks the common mode voltage of the input signal; a real-time signal judgment circuit, real-time rectifying and amplifying a difference between the input signal and the reference voltage; and a deglitch circuit, sampling and/or amplifying an output signal of the real-time signal judgment circuit, and transforming sampling results into the digital output signal to reflect signal squelch of the differential input signal.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: November 2, 2010
    Assignee: Faraday Technology Corp.
    Inventors: Wen-Ching Hsiung, Kuan-Yu Chen, Jeng-Dau Chang, Chia-Liang Lai
  • Patent number: 7795926
    Abstract: A phase detector, including a sampling device, a comparing device, and an output device, is provided. The sampling device samples a data signal according to a plurality of clock signals, so as to provide a plurality of corresponding sampling values. The clock signals have the same frequency and different phases. The comparing device is coupled to the sampling device, and provides a plurality of corresponding comparison values according to comparison results of each of the sampling values comparing with the next sampling value. The output device is coupled to the comparing device, and outputs two of the comparison values in response to edges of the clock signals. The two outputted comparison values serve as a first instruction signal and a second instruction signal respectively. The first and the second instruction signals are referred to in controlling the frequency and the phase of the foregoing clock signals.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: September 14, 2010
    Assignee: Faraday Technology Corp.
    Inventors: Yu-Hsin Tseng, Wen-Ching Hsiung
  • Patent number: 7782095
    Abstract: A signal comparison circuit is provided. The signal comparison circuit includes a first amplifier, a second amplifier, a peak detector, and a comparator. The first amplifier is a zero-peaking amplifier. The first amplifier receives and amplifies a data signal. The second amplifier receives and amplifies a reference voltage. The peak detector is coupled to the first and the second amplifiers for detecting and maintaining maximum values of the amplified data signal and the amplified reference voltage, and then outputting the maintained data signal and the maintained reference voltage. The comparator is coupled to the peak detector for comparing the maintained data signal with the maintained reference voltage and outputting a result of the comparison.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: August 24, 2010
    Assignee: Faraday Technology Corp.
    Inventors: Wen-Ching Hsiung, Chia-Liang Lai, Kuan-Yu Chen, Jeng-Dau Chang
  • Patent number: 7782142
    Abstract: A differential to single ended converting circuit includes a transconductance circuit having input terminals for receiving differential input voltages and having a first current output terminal for outputting a first current and a second current output terminal for outputting a second current; an offset cancellation circuit having a first controllable current source connected to the first current output terminal and a second controllable current source connected to the second current output terminal; a first transimpedance circuit having an input terminal connected to the first current output terminal and an output terminal for outputting a first voltage; a second transimpedance circuit having an input terminal connected to the second current output terminal and an output terminal for outputting a second voltage; and a first inverter having an input terminal connected to the output terminal of the first transimpedance circuit and an output terminal for outputting a first single ended output voltage.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: August 24, 2010
    Assignee: Faraday Technology Corp.
    Inventors: Inn-Fu Lin, Wen-Ching Hsiung
  • Patent number: 7764088
    Abstract: A frequency detection circuit and a detection method thereof suitable for a clock data recovery (CDR) circuit are provided. The frequency detection circuit includes a phase detector, a first delayer, a frequency detector, and a logic circuit. The phase detector samples a data signal according to a first clock signal provided by the CDR circuit and provides a phase instruction signal according to the sampling. The first delayer delays the first clock signal to obtain a second clock signal. The frequency detector samples the data signal according to the second clock signal and provides a frequency instruction signal according to the sampling. The logic circuit generates a clock instruction signal according to the phase instruction signal and the frequency instruction signal. The CDR circuit adjusts the frequency of the first clock signal according to the status of the clock instruction signal.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: July 27, 2010
    Assignee: Faraday Technology Corp.
    Inventors: Kuan-Yu Chen, Wen-Ching Hsiung, Cheng-Tao Chang, Chia-Liang Lai
  • Patent number: 7706115
    Abstract: Over-voltage indicator and related circuit and method. The over-voltage indicator can work with an I/O circuit of a chip for detecting over-voltage in an I/O pad and providing an indication signal accordingly. When over-voltage does not happen, the over-voltage indicator continues to detect a signal level of the I/O pad and keeps the indication signal low. Once over-voltage is detected, the over-voltage indicator pauses detecting, asserts a high level in the indication signal, and periodically resumes detecting until end of over-voltage is detected. With informing provided by the indication signal, a core cell of the chip can perform proper operation to reduce potential damage caused by over-voltage.
    Type: Grant
    Filed: November 3, 2007
    Date of Patent: April 27, 2010
    Assignee: Faraday Technology Corp.
    Inventors: Wen-Ching Hsiung, Jeng-Dau Chang, Chia-Liang Lai, Kuan-Yu Chen
  • Publication number: 20100073045
    Abstract: A frequency detection circuit and a detection method thereof suitable for a clock data recovery (CDR) circuit are provided. The frequency detection circuit includes a phase detector, a first delayer, a frequency detector, and a logic circuit. The phase detector samples a data signal according to a first clock signal provided by the CDR circuit and provides a phase instruction signal according to the sampling. The first delayer delays the first clock signal to obtain a second clock signal. The frequency detector samples the data signal according to the second clock signal and provides a frequency instruction signal according to the sampling. The logic circuit generates a clock instruction signal according to the phase instruction signal and the frequency instruction signal. The CDR circuit adjusts the frequency of the first clock signal according to the status of the clock instruction signal.
    Type: Application
    Filed: September 24, 2008
    Publication date: March 25, 2010
    Applicant: FARADAY TECHNOLOGY CORP.
    Inventors: Kuan-Yu Chen, Wen-Ching Hsiung, Cheng-Tao Chang, Chia-Liang Lai
  • Publication number: 20090295481
    Abstract: A differential to single ended converting circuit includes a transconductance circuit having input terminals for receiving differential input voltages and having a first current output terminal for outputting a first current and a second current output terminal for outputting a second current; an offset cancellation circuit having a first controllable current source connected to the first current output terminal and a second controllable current source connected to the second current output terminal; a first transimpedance circuit having an input terminal connected to the first current output terminal and an output terminal for outputting a first voltage; a second transimpedance circuit having an input terminal connected to the second current output terminal and an output terminal for outputting a second voltage; and a first inverter having an input terminal connected to the output terminal of the first transimpedance circuit and an output terminal for outputting a first single ended output voltage.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 3, 2009
    Applicant: FARADAY TECHNOLOGY CORPORATION
    Inventors: INN-FU LIN, WEN-CHING HSIUNG
  • Publication number: 20090256629
    Abstract: A phase detector, including a sampling device, a comparing device, and an output device, is provided. The sampling device samples a data signal according to a plurality of clock signals, so as to provide a plurality of corresponding sampling values. The clock signals have the same frequency and different phases. The comparing device is coupled to the sampling device, and provides a plurality of corresponding comparison values according to comparison results of each of the sampling values comparing with the next sampling value. The output device is coupled to the comparing device, and outputs two of the comparison values in response to edges of the clock signals. The two outputted comparison values serve as a first instruction signal and a second instruction signal respectively. The first and the second instruction signals are referred to in controlling the frequency and the phase of the foregoing clock signals.
    Type: Application
    Filed: April 11, 2008
    Publication date: October 15, 2009
    Applicant: FARADAY TECHNOLOGY CORP.
    Inventors: Yu-Hsin Tseng, Wen-Ching Hsiung
  • Publication number: 20090219056
    Abstract: A signal detection circuit is used for detecting signal squelch of a differential input signal to generate a corresponding digital output signal. The signal detection circuit includes: a reference voltage generator for generating a reference voltage of which the common mode voltage tracks the common mode voltage of the input signal; a real-time signal judgment circuit, real-time rectifying and amplifying a difference between the input signal and the reference voltage; and a deglitch circuit, sampling and/or amplifying an output signal of the real-time signal judgment circuit, and transforming sampling results into the digital output signal to reflect signal squelch of the differential input signal.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 3, 2009
    Applicant: Faraday Technology Corp.
    Inventors: Wen-Ching Hsiung, Kuan-Yu Chen, Jeng-Dau Chang, Chia-Liang Lai
  • Publication number: 20090134913
    Abstract: A signal comparison circuit is provided. The signal comparison circuit includes a first amplifier, a second amplifier, a peak detector, and a comparator. The first amplifier is a zero-peaking amplifier. The first amplifier receives and amplifies a data signal. The second amplifier receives and amplifies a reference voltage. The peak detector is coupled to the first and the second amplifiers for detecting and maintaining maximum values of the amplified data signal and the amplified reference voltage, and then outputting the maintained data signal and the maintained reference voltage. The comparator is coupled to the peak detector for comparing the maintained data signal with the maintained reference voltage and outputting a result of the comparison.
    Type: Application
    Filed: November 26, 2007
    Publication date: May 28, 2009
    Applicant: FARADAY TECHNOLOGY CORP.
    Inventors: Wen-Ching Hsiung, Chia-Liang Lai, Kuan-Yu Chen, Jeng-Dau Chang
  • Publication number: 20080285196
    Abstract: Over-voltage indicator and related circuit and method. The over-voltage indicator can work with an I/O circuit of a chip for detecting over-voltage in an I/O pad and providing an indication signal accordingly. When over-voltage does not happen, the over-voltage indicator continues to detect a signal level of the I/O pad and keeps the indication signal low. Once over-voltage is detected, the over-voltage indicator pauses detecting, asserts a high level in the indication signal, and periodically resumes detecting until end of over-voltage is detected. With informing provided by the indication signal, a core cell of the chip can perform proper operation to reduce potential damage caused by over-voltage.
    Type: Application
    Filed: November 3, 2007
    Publication date: November 20, 2008
    Applicant: FARADAY TECHNOLOGY CORPORATION
    Inventors: Wen-Ching Hsiung, Jeng-Dau Chang, Chia-Liang Lai, Kuan-Yu Chen