Patents by Inventor Wen-Chung Chiang

Wen-Chung Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136444
    Abstract: A flash memory device and method of making the same are disclosed. The flash memory device is located on a substrate and includes a floating gate electrode, a tunnel dielectric layer located between the substrate and the floating gate electrode, a smaller length control gate electrode and a control gate dielectric layer located between the floating gate electrode and the smaller length control gate electrode. The length of a major axis of the smaller length control gate electrode is less than a length of a major axis of the floating gate electrode.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 25, 2024
    Inventors: Yu-Chu Lin, Chi-Chung Jen, Wen-Chih Chiang, Yi-Ling Liu, Huai-Jen Tung, Keng-Ying Liao
  • Publication number: 20240079263
    Abstract: A wafer container includes a frame, a door and at least a pair of shelves. The frame has opposite sidewalls. The pair of the shelves are respectively disposed and aligned on the opposite sidewalls of the frame. Various methods and devices are provided for holding at least one wafer to the shelves during transport.
    Type: Application
    Filed: February 22, 2023
    Publication date: March 7, 2024
    Inventors: Kai-Hung HSIAO, Chi-Chung JEN, Yu-Chun SHEN, Yuan-Cheng KUO, Chih-Hsiung HUANG, Wen-Chih CHIANG
  • Patent number: 9659801
    Abstract: A high-efficiency buffer stocker is disclosed. The buffer stocker includes an overhead transport track for supporting overhead transport vehicles carrying wafer containers and at least one conveyor system or conveyor belt provided beneath the overhead transport track for receiving the wafer containers from the overhead transport vehicles on the overhead transport track. The buffer stocker is capable of absorbing the excessive flow of wafer containers between a processing tool and a stocker, for example, to facilitate the orderly and efficient flow of wafers between sequential process tools in a semiconductor fabrication facility, for example.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: May 23, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Lei Ma, Chih-Hung Huang, Wen-Chung Chiang, Min-Yu Hsieh, Fiona H. Lee
  • Publication number: 20160005633
    Abstract: A high-efficiency buffer stocker is disclosed. The buffer stocker includes an overhead transport track for supporting overhead transport vehicles carrying wafer containers and at least one conveyor system or conveyor belt provided beneath the overhead transport track for receiving the wafer containers from the overhead transport vehicles on the overhead transport track. The buffer stocker is capable of absorbing the excessive flow of wafer containers between a processing tool and a stocker, for example, to facilitate the orderly and efficient flow of wafers between sequential process tools in a semiconductor fabrication facility, for example.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 7, 2016
    Inventors: Kuo-Lei Ma, Chih-Hung Huang, Wen-Chung Chiang, Min-Yu Hsieh, Fiona H. Lee
  • Patent number: 9125335
    Abstract: A ceramic circuit board for use in packaging an electronic element includes a ceramic-copper plate, and a heat-dissipating unit that is adapted for dissipating heat from the electronic element. The ceramic-copperplate includes a ceramic substrate that has opposite first and second surfaces, and a through-hole formed through the first and second surfaces, a top copper pattern that overlies the first surface of the ceramic substrate and that has at least two conducting portions spaced apart from each other, and a bottom copper layer that underlies the second surface of the ceramic substrate. The heat-dissipating unit includes a heat-dissipating layer that is disposed in the through-hole of the ceramic substrate above the bottom copper layer and that has a thermal conductivity larger than that of the ceramic substrate. A method of making the ceramic circuit board is also disclosed.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: September 1, 2015
    Assignee: TONG HSING ELECTRONIC INDUSTRIES, LTD.
    Inventor: Wen-Chung Chiang
  • Patent number: 8898892
    Abstract: A circuit board module includes a circuit board and a heat-dissipating device. The circuit board includes a ceramic substrate, and a circuit pattern formed on a surface of the ceramic substrate. The circuit board is sinter-bonded to a main body of the heat-dissipating device. A method of making the circuit board module is also disclosed.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: December 2, 2014
    Assignee: Tong Hsing Electronic Industries, Ltd.
    Inventors: Wen-Chung Chiang, Keng-Chung Wu, Ying-Chi Hsieh, Cheng-Kang Lu, Ming-Huang Fu
  • Publication number: 20140090825
    Abstract: A liquid-cooled heat dissipating device includes a chamber-confining body confining a liquid chamber adapted to receive a liquid coolant, and having a surrounding wall that surrounds the liquid chamber, a cover plate covering the liquid chamber and sinter-bonded to the surrounding wall, a liquid inlet spatially communicating with the liquid chamber, and a liquid outlet spatially communicating with the liquid chamber. A method of making the liquid-cooled heat dissipating device is also disclosed.
    Type: Application
    Filed: November 12, 2013
    Publication date: April 3, 2014
    Applicant: TONG HSING ELECTRONIC INDUSTRIES, LTD.
    Inventor: Wen-Chung CHIANG
  • Publication number: 20140000106
    Abstract: A circuit board module includes a circuit board and a heat-dissipating device. The circuit board includes a ceramic substrate, and a circuit pattern formed on a surface of the ceramic substrate. The circuit board is sinter-bonded to a main body of the heat-dissipating device. A method of making the circuit board module is also disclosed.
    Type: Application
    Filed: September 5, 2013
    Publication date: January 2, 2014
    Applicant: Tong Hsing Electronic Industries, Ltd.
    Inventors: Wen-Chung Chiang, Keng-Chung Wu, Ying-Chi Hsieh, Cheng-Kang Lu, Ming-Huang Fu
  • Patent number: 8549739
    Abstract: A circuit board module includes a circuit board and a heat-dissipating device. The circuit board includes a ceramic substrate, and a circuit pattern formed on a surface of the ceramic substrate. The circuit board is sinter-bonded to a main body of the heat-dissipating device. A method of making the circuit board module is also disclosed.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: October 8, 2013
    Assignee: Tong Hsing Electronic Industries, Ltd.
    Inventors: Wen-Chung Chiang, Keng-Chung Wu, Ying-Chi Hsieh, Cheng-Kang Lu, Ming-Huang Fu
  • Publication number: 20130228273
    Abstract: A ceramic circuit board for use in packaging an electronic element includes a ceramic-copper plate, and a heat-dissipating unit that is adapted for dissipating heat from the electronic element. The ceramic-copperplate includes a ceramic substrate that has opposite first and second surfaces, and a through-hole formed through the first and second surfaces, a top copper pattern that overlies the first surface of the ceramic substrate and that has at least two conducting portions spaced apart from each other, and a bottom copper layer that underlies the second surface of the ceramic substrate. The heat-dissipating unit includes a heat-dissipating layer that is disposed in the through-hole of the ceramic substrate above the bottom copper layer and that has a thermal conductivity larger than that of the ceramic substrate. A method of making the ceramic circuit board is also disclosed.
    Type: Application
    Filed: April 12, 2013
    Publication date: September 5, 2013
    Applicant: Tong Hsing Electronic Industries, Ltd.
    Inventor: Wen-Chung Chiang
  • Patent number: 8461614
    Abstract: A packaging substrate device includes: a first laminate including a first ceramic substrate and a first copper pattern disposed on an upper surface of the first ceramic substrate; and a second laminate disposed over the first copper pattern and including a second ceramic substrate, a second copper pattern that is disposed on an upper surface of the second ceramic substrate, and a through hole extending through the second ceramic substrate and the second copper pattern to expose a copper portion of the first copper pattern. A light emitting semiconductor die can be mounted on the copper portion within the through hole. Efficient heat dissipation can be achieved through the first laminate.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: June 11, 2013
    Assignee: Tong Hsing Electronic Industries, Ltd.
    Inventors: Wen-Chung Chiang, Keng-Chung Wu, Ying-Chi Hsieh, Cheng-Kang Lu, Ming-Huang Fu
  • Patent number: 8431835
    Abstract: A method for making a packaging device for an electronic element includes: preparing a ceramic frame body defined with a hollow space for receiving the electronic element therein; preparing a ceramic substrate having a copper layer formed thereon; etching the copper layer to form a predetermined copper pattern on an upper surface of the ceramic substrate; placing the ceramic frame body onto the upper surface of the ceramic substrate and in contact with the copper pattern; and heating the ceramic frame body and the ceramic substrate such that the copper pattern bonds the ceramic frame body to the ceramic substrate. A packaging device for an electronic element is also disclosed.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: April 30, 2013
    Assignee: High Conduction Scientific Co. Ltd.
    Inventors: Wen-Chung Chiang, Keng-Chung Wu, Ying-Chi Hsieh, Cheng-Kang Lu, Ming-Huang Fu
  • Patent number: 8308418
    Abstract: A high-efficiency buffer stocker is disclosed. The buffer stocker includes an overhead transport track for supporting overhead transport vehicles carrying wafer containers and at least one conveyor system or conveyor belt provided beneath the overhead transport track for receiving the wafer containers from the overhead transport vehicles on the overhead transport track. The buffer stocker is capable of absorbing the excessive flow of wafer containers between a processing tool and a stocker, for example, to facilitate the orderly and efficient flow of wafers between sequential process tools in a semiconductor fabrication facility, for example.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: November 13, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Veen Ma, Chih-Hung Huang, Wen-Chung Chiang, Goldie Hsieh, Fiona Lee
  • Publication number: 20100307730
    Abstract: A liquid-cooled heat dissipating device includes a chamber-confining body confining a liquid chamber adapted to receive a liquid coolant, and having a surrounding wall that surrounds the liquid chamber, a cover plate covering the liquid chamber and sinter-bonded to the surrounding wall, a liquid inlet spatially communicating with the liquid chamber, and a liquid outlet spatially communicating with the liquid chamber. A method of making the liquid-cooled heat dissipating device is also disclosed.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 9, 2010
    Applicant: High Conduction Scientific Co., Ltd.
    Inventor: Wen-Chung Chiang
  • Publication number: 20100288537
    Abstract: A circuit board module includes a circuit board and a heat-dissipating device. The circuit board includes a ceramic substrate, and a circuit pattern formed on a surface of the ceramic substrate. The circuit board is sinter-bonded to a main body of the heat-dissipating device. A method of making the circuit board module is also disclosed.
    Type: Application
    Filed: May 13, 2010
    Publication date: November 18, 2010
    Applicant: High Conduction Scientific Co., Ltd.
    Inventors: Wen-Chung Chiang, Keng-Chung Wu, Ying-Chi Hsieh, Cheng-Kang Lu, Ming-Huang Fu
  • Publication number: 20100288536
    Abstract: A ceramic circuit board for use in packaging an electronic element includes a ceramic-copper plate, and a heat-dissipating unit that is adapted for dissipating heat from the electronic element. The ceramic-copper plate includes a ceramic substrate that has opposite first and second surfaces, and a through-hole formed through the first and second surfaces, a top copper pattern that overlies the first surface of the ceramic substrate and that has at least two conducting portions spaced apart from each other, and a bottom copper layer that underlies the second surface of the ceramic substrate. The heat-dissipating unit includes a heat-dissipating layer that is disposed in the through-hole of the ceramic substrate above the bottom copper layer and that has a thermal conductivity larger than that of the ceramic substrate. A method of making the ceramic circuit board is also disclosed.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 18, 2010
    Applicant: High Conduction Scientific Co., Ltd.
    Inventor: Wen-Chung Chiang
  • Publication number: 20100258838
    Abstract: A packaging substrate device includes: a first laminate including a first ceramic substrate and a first copper pattern disposed on an upper surface of the first ceramic substrate; and a second laminate disposed over the first copper pattern and including a second ceramic substrate, a second copper pattern that is disposed on an upper surface of the second ceramic substrate, and a through hole extending through the second ceramic substrate and the second copper pattern to expose a copper portion of the first copper pattern. A light emitting semiconductor die can be mounted on the copper portion within the through hole. Efficient heat dissipation can be achieved through the first laminate.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 14, 2010
    Applicant: High Conduction Scientific Co., Ltd.
    Inventors: Wen-Chung Chiang, Keng-Chung Wu, Ying-Chi Hsieh, Cheng-Kang Lu, Ming-Huang Fu
  • Publication number: 20100236819
    Abstract: A method for making a printed circuit board includes: (a) preparing a laminate having a ceramic substrate, first and second metal foils disposed on two opposite surfaces of the ceramic substrate, and a through hole extending through the ceramic substrate and the first and second metal foils; (b) filling the through hole with a metal paste such that the metal paste is in contact with the first and second metal foils; and (c) sintering the metal paste and the laminate such that the metal paste is connected electrically to the first and second metal foils. A printed circuit board made according to the method is also disclosed.
    Type: Application
    Filed: March 15, 2010
    Publication date: September 23, 2010
    Applicant: High Conduction Scientific Co., Ltd.
    Inventors: Wen-Chung Chiang, Keng-Chung Wu, Ying-Chi Hsieh, Cheng-Kang Lu, Ming-Huang Fu
  • Publication number: 20100230156
    Abstract: A method for making a packaging device for an electronic element includes: preparing a ceramic frame body defined with a hollow space for receiving the electronic element therein; preparing a ceramic substrate having a copper layer formed thereon; etching the copper layer to form a predetermined copper pattern on an upper surface of the ceramic substrate; placing the ceramic frame body onto the upper surface of the ceramic substrate and in contact with the copper pattern ; and heating the ceramic frame body and the ceramic substrate such that the copper pattern bonds the ceramic frame body to the ceramic substrate. A packaging device for an electronic element is also disclosed.
    Type: Application
    Filed: March 9, 2010
    Publication date: September 16, 2010
    Applicant: High Conduction Scientific Co., Ltd.
    Inventors: Wen-Chung Chiang, Keng-Chung Wu, Ying-Chi Hsieh, Cheng-Kang Lu, Ming-Huang Fu
  • Publication number: 20090152237
    Abstract: A ceramic-copper foil bonding method includes wet-oxidizing a copper foil such that a surface of the copper foil is oxidized to a copper oxide layer, contacting the copper oxide layer with a surface of a ceramic substrate, and bonding the copper oxide layer of the copper foil to the surface of the ceramic substrate by heat treatment. Preferably, a protective layer is provided on an opposite surface of the copper foil so that the opposite surface is not oxidized during wet-oxidizing the copper foil.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 18, 2009
    Applicant: High Conduction Scientific Co., Ltd.
    Inventors: Wen-Chung Chiang, Keng-Chung Wu, Jun-Jae Wu