Patents by Inventor Wen-Fa Tsai

Wen-Fa Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210088865
    Abstract: A method for fabricating an electrochromic device includes: depositing a first transparent film on a first substrate; depositing a first mesh structure on the first transparent film; depositing a second transparent film on the first mesh structure; depositing an electrochromic layer of WO3 or MoO3 on the second transparent film by an arc-plasma process to form a first electrode structure; depositing a third transparent film on a second substrate; depositing a second mesh structure on the third transparent film; depositing a fourth transparent film on the second mesh structure; forming an ion storage layer of PB on the fourth transparent film to produce a second electrode structure; binding the first and second electrode structures by having the electrochromic layer to face the ion storage layer; and, forming an electrolyte layer between the first and second electrode structures to produce the electrochromic device. In addition, an electrochromic device is also provided.
    Type: Application
    Filed: December 27, 2019
    Publication date: March 25, 2021
    Inventors: TIEN-FU KO, CHEN-TE CHANG, PO-WEN CHEN, HSIN-FU YU, KUO-CHUAN HO, SHENG-CHUAN HSU, JIN-YU WU, WEN-FA TSAI, HWEN-FEN HONG
  • Patent number: 10353262
    Abstract: The present invention discloses a method for fabricating an electrochromic device, which adopts the vacuum cathodic arc-plasma deposition to comprise five layers with an ionic conduction layer (electrolyte) in contact with an electrochromic (EC) layer and an ion storage (complementary) layer, all sandwiched between two transparent conducting layers sequentially on a substrate. The method owns superior deposition efficiency and the fabricated thin film structures have higher crystalline homogeneity. In addition, thanks to the nanometer pores in the thin film structures, the electric capacity as well as the ion mobility are greater. Consequently, the reaction efficiency for bleaching or coloring is enhanced.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: July 16, 2019
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C
    Inventors: Po-Wen Chen, Chen-Te Chang, Peng Yang, Jin-Yu Wu, Der-Jun Jan, Cheng-Chang Hsieh, Wen-Fa Tsai, Min-Chuan Wang
  • Publication number: 20180120662
    Abstract: The present invention discloses a method for fabricating an electrochromic device, which adopts the vacuum cathodic arc-plasma deposition to comprise five layers with an ionic conduction layer (electrolyte) in contact with an electrochromic (EC) layer and an ion storage (complementary) layer, all sandwiched between two transparent conducting layers sequentially on a substrate. The method owns superior deposition efficiency and the fabricated thin film structures have higher crystalline homogeneity. In addition, thanks to the nanometer pores in the thin film structures, the electric capacity as well as the ion mobility are greater. Consequently, the reaction efficiency for bleaching or coloring is enhanced.
    Type: Application
    Filed: August 7, 2017
    Publication date: May 3, 2018
    Inventors: PO-WEN CHEN, CHEN-TE CHANG, PENG YANG, JIN-YU WU, DER-JUN JAN, CHENG-CHANG HSIEH, WEN-FA TSAI, MIN-CHUAN WANG
  • Patent number: 9951416
    Abstract: A vacuum coating apparatus includes at least a chamber, an arc discharge plasma source, a feeding-reeling unit, and a roller set. The first and second openings are connecting with the feeding or reeling unit so as to allow the substrate to enter and leave the chamber therethrough, respectively. The arc discharge plasma source located inside the chamber generates the plasma, which discharges radially from the arc discharge plasma source as its center. The roller set includes a plurality of the first rollers, which are located in the chamber and enclosing the arc discharge plasma source. A first surface of the substrate is facing the plurality of the first rollers and contacts tightly on the periphery of the first rollers so that the first rollers can rotate by the moving of the substrate. The material evaporated and emitted by the plasma is attached onto the first surface of the substrate.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 24, 2018
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN
    Inventors: Cheng-Chang Hsieh, Deng-Lian Lin, En-Shih Chen, Wen-Fa Tsai, Chi-Fong Ai
  • Patent number: 9892889
    Abstract: The present invention relates to a roll-to-roll hybrid plasma modular coating system, which comprises: at least one arc plasma processing unit, at least one magnetron sputtering plasma processing unit, a metallic film and at least one substrate feeding unit. Each of the arc plasma processing unit is formed with a first chamber and an arc plasma source. Each of the magnetron sputtering plasma processing unit is formed with a second chamber and at least one magnetron sputtering plasma source. The metallic film is disposed in the arc plasma processing unit to avoid chamber wall being deposited by the arc plasma source; There are at least one arc plasma processing unit, at least one magnetron sputtering plasma processing unit and at least one winding/unwinding unit connected in series to lay at least one thin layer by arc plasma deposition or by magnetron sputtering plasma onto substrate material.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: February 13, 2018
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C
    Inventors: Cheng-Chang Hsieh, Deng-Lain Lin, Ching-Pei Tseng, Wen-Fa Tsai, Jiun-Shen Chen, Chi-Fong Ai
  • Publication number: 20170040150
    Abstract: The present invention relates to a roll-to-roll hybrid plasma modular coating system, which comprises: at least one arc plasma processing unit, at least one magnetron sputtering plasma processing unit, a metallic film and at least one substrate feeding unit. Each of the arc plasma processing unit is formed with a first chamber and an arc plasma source. Each of the magnetron sputtering plasma processing unit is formed with a second chamber and at least one magnetron sputtering plasma source. The metallic film is disposed in the arc plasma processing unit to avoid chamber wall being deposited by the arc plasma source; There are at least one arc plasma processing unit, at least one magnetron sputtering plasma processing unit and at least one winding/unwinding unit connected in series to lay at least one thin layer by arc plasma deposition or by magnetron sputtering plasma onto substrate material.
    Type: Application
    Filed: April 13, 2016
    Publication date: February 9, 2017
    Inventors: Cheng-Chang Hsieh, Deng-Lain Lin, Ching-Pei Tseng, Wen-Fa Tsai, Jiun-Shen Chen, Chi-Fong Ai
  • Publication number: 20160076143
    Abstract: A vacuum coating apparatus includes at least a chamber, an arc discharge plasma source, a feeding-reeling unit, and a roller set. The first and second openings are connecting with the feeding or reeling unit so as to allow the substrate to enter and leave the chamber therethrough, respectively. The arc discharge plasma source located inside the chamber generates the plasma, which discharges radially from the arc discharge plasma source as its center. The roller set includes a plurality of the first rollers, which are located in the chamber and enclosing the arc discharge plasma source. A first surface of the substrate is facing the plurality of the first rollers and contacts tightly on the periphery of the first rollers so that the first rollers can rotate by the moving of the substrate. The material evaporated and emitted by the plasma is attached onto the first surface of the substrate.
    Type: Application
    Filed: August 7, 2015
    Publication date: March 17, 2016
    Inventors: Cheng-Chang HSIEH, Deng-Lian LIN, En-Shih CHEN, Wen-Fa TSAI, Chi-Fong AI
  • Patent number: 8062964
    Abstract: The present disclosure passivates solar cell defects. Plasma immersion ion implantation (PIII) is used to repair the defects during or after making the solar cell. Hydrogen ion is implanted into absorption layer with different sums of energy to fill gaps of defects or surface recombination centers. Thus, solar cell defects are diminished and carriers are transferred with improved photovoltaic conversion efficiency.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: November 22, 2011
    Assignee: Atomic Energy Council
    Inventors: Wen-Fa Tsai, Jyong-Fong Liao, Yen-Yu Chen, Chee Wee Liu, Chi-Fong Ai
  • Publication number: 20110053351
    Abstract: The present disclosure passivates solar cell defects. Plasma immersion ion implantation (PIII) is used to repair the defects during or after making the solar cell. Hydrogen ion is implanted into absorption layer with different sums of energy to fill gaps of defects or surface recombination centers. Thus, solar cell defects are diminished and carriers are transferred with improved photovoltaic conversion efficiency.
    Type: Application
    Filed: August 9, 2010
    Publication date: March 3, 2011
    Applicant: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Wen-Fa Tsai, Jyong-Fong Liao, Yen-Yu Chen, Chee Wee Liu, Chi-Fong Ai