Patents by Inventor Wen-How Deng

Wen-How Deng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7992285
    Abstract: A method for fabricating a negative temperature coefficient thermistor is provided, including the steps of: (A) combining ceramic powders having a negative temperature coefficient of resistance, a polymer binder and a solvent to form a mixture; (B) removing the solvent and granulating the mixture to form granulous powders; (C) compressing the granulous powders to obtain a thermistor material with a specific shape; (D) curing the thermistor material at 80° C. to 350° C.; and (E) mounting an electrode to the thermistor material to form the negative temperature coefficient thermistor. The method can be performed in a low temperature without the problem of interface diffusion. Further, the desired resistance value and thermistor constant (B) can be easily adjusted and obtained by mixing ceramic powders with different characteristics of temperature coefficient of resistance and/or the addition of conductive metal powder.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: August 9, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Wen-How Deng, Tsung-Wen Chen, Shin-Shing Lo
  • Publication number: 20090165289
    Abstract: A method for fabricating a negative temperature coefficient thermistor is provided, including the steps of: (A) combining ceramic powders having a negative temperature coefficient of resistance, a polymer binder and a solvent to form a mixture; (B) removing the solvent and granulating the mixture to form granulous powders; (C) compressing the granulous powders to obtain a thermistor material with a specific shape; (D) curing the thermistor material at 80° C. to 350° C.; and (E) mounting an electrode to the thermistor material to form the negative temperature coefficient thermistor. The method can be performed in a low temperature without the problem of interface diffusion. Further, the desired resistance value and thermistor constant (B) can be easily adjusted and obtained by mixing ceramic powders with different characteristics of temperature coefficient of resistance and/or the addition of conductive metal powder.
    Type: Application
    Filed: August 29, 2008
    Publication date: July 2, 2009
    Inventors: Wen-How DENG, Tsung-Wen CHEN, Shin-Shing LO