Patents by Inventor Wen-Hsiung Lu

Wen-Hsiung Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8735273
    Abstract: A method includes forming a passivation layer over a metal pad, which is overlying a semiconductor substrate. A first opening is formed in the passivation layer, with a portion of the metal pad exposed through the first opening. A seed layer is formed over the passivation layer and to electrically coupled to the metal pad. The seed layer further includes a portion over the passivation layer. A first mask is formed over the seed layer, wherein the first mask has a second opening directly over at least a portion of the metal pad. A PPI is formed over the seed layer and in the second opening. A second mask is formed over the first mask, with a third opening formed in the second mask. A portion of a metal bump is formed in the third opening. After the step of forming the portion of the metal bump, the first and the second masks are removed.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: May 27, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hsiung Lu, Ming-Da Cheng, Chih-Wei Lin, Yi-Wen Wu, Hsiu-Jen Lin, Chung-Shi Liu, Mirng-Ji Lii, Chen-Hua Yu
  • Publication number: 20140054764
    Abstract: A semiconductor package includes a semiconductor substrate, a contact pad overlying the semiconductor substrate, an interconnect layer overlying the contact pad, a passivation layer formed between the contact pad and the interconnect layer, a bump overlying the interconnect layer, and a protection layer overlying the interconnect layer and the passivation layer and covering a lower portion of the bump. The protection layer includes a curved surface region.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Hsiung Lu, Ming-Da Cheng, Yi-Wen Wu, Yu-Peng Tsai, Chia-Wei Tu, Chung-Shi Liu
  • Patent number: 8659155
    Abstract: The mechanism of forming a metal bump structure described above resolves the delamination issues between a conductive layer on a substrate and a metal bump connected to the conductive layer. The conductive layer can be a metal pad, a post passivation interconnect (PPI) layer, or a top metal layer. By performing an in-situ deposition of a protective conductive layer over the conductive layer (or base conductive layer), the under bump metallurgy (UBM) layer of the metal bump adheres better to the conductive layer and reduces the occurrence of interfacial delamination. In some embodiments, a copper diffusion barrier sub-layer in the UBM layer can be removed. In some other embodiments, the UBM layer is not needed if the metal bump is deposited by a non-plating process and the metal bump is not made of copper.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: February 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Da Cheng, Wen-Hsiung Lu, Chih-Wei Lin, Ching-Wen Chen, Yi-Wen Wu, Chia-Tung Chang, Ming-Che Ho, Chung-Shi Liu
  • Publication number: 20130341800
    Abstract: A method includes forming an electrical connector over a substrate of a wafer, and molding a polymer layer, with at least a portion of the electrical connector molded in the polymer layer. A first sawing step is performed to form a trench in the polymer layer. After the first sawing step, a second sawing step is performed to saw the wafer into a plurality of dies.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Wei Tu, Yian-Liang Kuo, Wen-Hsiung Lu, Hsien-Wei Chen, Tsung-Fu Tsai
  • Publication number: 20130328190
    Abstract: Methods and apparatuses for wafer level packaging (WLP) of semiconductor devices are disclosed. A contact pad of a circuit may be connected to a solder bump by way of a post passivation interconnect (PPI) line and a PPI pad. The PPI pad may comprise a hollow part and an opening. The PPI pad may be formed together with the PPI line as one piece. The hollow part of the PPI pad can function to control the amount of solder flux used in the ball mounting process so that any extra amount of solder flux can escape from an opening of the solid part of the PPI pad. A solder ball can be mounted to the PPI pad directly without using any under bump metal (UBM) as a normal WLP package would need.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Wen Wu, Ming-Che Ho, Wen-Hsiung Lu, Chia-Wei Tu, Chung-Shi Liu
  • Patent number: 8603860
    Abstract: A method includes loading a first package component on a concave boat, and placing a second package component over the first package component. A load clamp is placed over the second package component, wherein the load clamp is supported by a temperature-variable spacer of the concave boat. A reflow step is performed to bond the second package component to the first package component. During a temperature-elevation step of the reflow step, the temperature-variable spacer is softened in response to an increase in temperature, and a height of the softened temperature-variable spacer is reduced, until the load clamp is stopped by a rigid spacer of the concave boat.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: December 10, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, L.L.C.
    Inventors: Meng-Tse Chen, Kuei-Wei Huang, Wei-Hung Lin, Wen-Hsiung Lu, Ming-Da Cheng, Chung-Shi Liu
  • Publication number: 20130309621
    Abstract: A method for adjusting the warpage of a wafer, includes providing a wafer having a center portion and edge portions and providing a holding table having a holding area thereon for holding the wafer. The wafer is placed onto the holding table with the center portion higher than the edge portions and thereafter pressed onto the holding area such that the wafer is attracted to and held onto the holding table by self-suction force. The wafer is heated at a predetermined temperature and for a predetermined time in accordance with an amount of warpage of the wafer in order to achieve a substantially flat wafer or a predetermined wafer level.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hui-Min HUANG, Chih-Wei LIN, Wen-Hsiung LU, Ming-Da CHENG, Chung-Shi LIU
  • Patent number: 8581401
    Abstract: This disclosure relates to a bump structure on a substrate including a copper layer, wherein the copper layer fills an opening created in a dielectric layer and a polymer layer. The bump structure further includes an under-bump-metallurgy (UBM) layer lines the opening and the copper layer is deposited over the UBM layer. The bump structure further includes a surface of the copper layer facing away from the substrate is curved. This disclosure also relates to two bump structures with different heights on a substrate where a thickness of the first bump structure is different than a thickness of the second bump structure. This disclosure also relates to a semiconductor device including a bump structure.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: November 12, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hsiung Lu, Ming-Da Cheng, Chih-Wei Lin, Chung-Shi Liu
  • Publication number: 20130295762
    Abstract: A method of forming a bump structure includes providing a semiconductor substrate and forming an under-bump-metallurgy (UBM) layer on the semiconductor substrate. The method further includes forming a mask layer on the UBM layer, wherein the mask layer has an opening exposing a portion of the UBM layer. The method further includes forming a copper layer in the opening of the mask layer and removing a portion of the mask layer to form a space between the copper layer and the mask layer. The method further includes performing an electrolytic process to fill the space with a metal layer and removing the mask layer.
    Type: Application
    Filed: June 26, 2013
    Publication date: November 7, 2013
    Inventors: Wen-Hsiung LU, Ming-Da CHENG, Chih-Wei LIN, Jacky CHANG, Chung-Shi LIU, Chen-Hua YU
  • Publication number: 20130256870
    Abstract: A device includes a first and a second package component. A metal trace is disposed on a surface of the first package component. The metal trace has a lengthwise direction. The second package component includes a metal pillar, wherein the second package component is disposed over the first package component. A solder region bonds the metal pillar to the metal trace, wherein the solder region contacts a top surface of the metal trace.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chang-Chia HUANG, Tsung-Shu LIN, Ming-Da CHENG, Wen-Hsiung LU, Bor-Rung SU
  • Patent number: 8546254
    Abstract: The mechanisms of preparing bump structures described by using patterned anodes may simplify bump-making process, reduce manufacturing cost, and improve thickness uniformity within die and across the wafer. In addition, the mechanisms described above allow forming bumps with different heights to allow bumps to be integrated with elements on a substrate with different heights. Bumps with different heights expand the application of copper post bumps to enable further chip integration.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: October 1, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hsiung Lu, Ming-Da Cheng, Chih-Wei Lin, Chung-Shi Liu
  • Patent number: 8501615
    Abstract: A system and method for forming metal bumps is provided. An embodiment comprises attaching conductive material to a carrier medium and then contacting the conductive material to conductive regions of a substrate. Portions of the conductive material are then bonded to the conductive regions using a bonding process to form conductive caps on the conductive regions, and residual conductive material and the carrier medium are removed. A reflow process is used to reflow the conductive caps into conductive bumps.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: August 6, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Da Cheng, Chih-Wei Lin, Hsiu-Jen Lin, Tzong-Hann Yang, Wen-Hsiung Lu, Zheng-Yi Lim, Yi-Wen Wu, Chung-Shi Liu
  • Publication number: 20130187269
    Abstract: A package assembly including a semiconductor die electrically coupled to a substrate by an interconnected joint structure. The semiconductor die includes a bump overlying a semiconductor substrate, and a molding compound layer overlying the semiconductor substrate and being in physical contact with a first portion of the bump. The substrate includes a no-flow underfill layer on a conductive region. A second portion of the bump is in physical contact with the no-flow underfill layer to form the interconnected joint structure.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 25, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Jen LIN, Tsung-Ding WANG, Chien-Hsiun LEE, Wen-Hsiung LU, Ming-Da CHENG, Chung-Shi LIU
  • Patent number: 8492891
    Abstract: A copper pillar bump has a sidewall protection layer formed of an electrolytic metal layer. The electrolytic metal layer is an electrolytic nickel layer, an electrolytic gold layer, and electrolytic copper layer, or an electrolytic silver layer.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: July 23, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hsiung Lu, Ming-Da Cheng, Chih-Wei Lin, Jacky Chang, Chung-Shi Liu, Chen-Hua Yu
  • Publication number: 20130181338
    Abstract: A structure comprises a post passivation interconnect layer formed over a semiconductor substrate, a metal bump formed over the post passivation interconnect layer and a molding compound layer formed over the semiconductor substrate. A lower portion of the metal bump is embedded in the molding compound layer and a middle portion of the metal bump is surrounded by a concave meniscus molding compound protection layer.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 18, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hsiung Lu, Yi-Wen Wu, Chih-Wei Lin, Hsiu-Jen Lin, Ming-Da Cheng, Chung-Shi Liu
  • Publication number: 20130147031
    Abstract: A semiconductor device includes a post-passivation interconnect (PPI) structure having a landing pad region. A polymer layer is formed on the PPI structure and patterned with a first opening and a second opening to expose portions of the landing pad region. The second opening is a ring-shaped opening surrounding the first opening. A bump structure is formed on the polymer layer to electrically connect the landing pad region through the first opening and the second opening.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsien-Wei CHEN, Yi-Wen WU, Wen-Hsiung LU
  • Publication number: 20130115735
    Abstract: Methods and apparatus for a forming molded underfills. A method is disclosed including loading a flip chip substrate into a selected one of the upper mold chase and lower mold chase of a mold press at a first temperature; positioning a molded underfill material in the at least one of the upper and lower mold chases while maintaining the first temperature which is lower than a melting temperature of the molded underfill material; forming a sealed mold cavity and creating a vacuum in the mold cavity; raising the temperature of the molded underfill material to a second temperature greater than the melting point to cause the molded underfill material to flow over the flip chip substrate forming an underfill layer and forming an overmolded layer; and cooling the flip chip substrate to a third temperature substantially lower than the melting temperature of the molded underfill material. An apparatus is disclosed.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 9, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Tse Chen, Hsiu-Jen Lin, Chun-Cheng Lin, Wen-Hsiung Lu, Ming-Da Cheng, Chung-Shi Liu
  • Publication number: 20130102112
    Abstract: A method includes loading a first package component on a concave boat, and placing a second package component over the first package component. A load clamp is placed over the second package component, wherein the load clamp is supported by a temperature-variable spacer of the concave boat. A reflow step is performed to bond the second package component to the first package component. During a temperature-elevation step of the reflow step, the temperature-variable spacer is softened in response to an increase in temperature, and a height of the softened temperature-variable spacer is reduced, until the load clamp is stopped by a rigid spacer of the concave boat.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 25, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Tse Chen, Kuei-Wei Huang, Wei-Hung Lin, Wen-Hsiung Lu, Ming-Da Cheng, Chung-Shi Liu
  • Publication number: 20130093078
    Abstract: A device includes an inter-layer dielectric, a device die under the inter-layer dielectric; and a die-attach film under the inter-layer dielectric and over the device die, wherein the die-attach film is attached to the device die. A plurality of redistribution lines includes portions level with the die-attach film. A plurality of Z-interconnects is electronically coupled to the device die and the plurality of redistribution lines. A polymer-comprising material is under the inter-layer dielectric. The device die, the die-attach film, and the plurality of Z-interconnects are disposed in the polymer-comprising material.
    Type: Application
    Filed: October 17, 2011
    Publication date: April 18, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Lin, Ming-Da Cheng, Meng-Tse Chen, Wen-Hsiung Lu, Kuei-Wei Huang, Chung-Shi Liu
  • Publication number: 20130089952
    Abstract: Packaging process tools and packaging methods for semiconductor devices are disclosed. In one embodiment, a packaging process tool for semiconductor devices includes a mechanical structure including a frame. The frame includes a plurality of apertures adapted to retain a plurality of integrated circuit dies therein. The frame includes at least one hollow region.
    Type: Application
    Filed: October 11, 2011
    Publication date: April 11, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hsiung Lu, Ming-Da Cheng, Wei-Hung Lin, Kuei-Wei Huang, Chih-Wei Lin, Chun-Cheng Lin, Chung-Shi Liu