Patents by Inventor Wen-Jiao Liao
Wen-Jiao Liao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240329108Abstract: A measuring system and a measuring method of an antenna pattern based on near field to far field transformation (NFTF) are provided. The measuring system includes a probe antenna, a reference antenna, and a control system. The probe antenna measures an electric field radiated by an antenna under test to obtain electric field information. The reference antenna measures the electric field to obtain a reference phase. The control system is coupled to the antenna under test, the probe antenna, and the reference antenna, wherein the control system applies near field focusing to the reference antenna to configure a focus point of the reference antenna on the antenna under test, and the control system performs the NFTF according to the electric field information and the reference phase to output far field patterns.Type: ApplicationFiled: May 23, 2023Publication date: October 3, 2024Applicant: Chunghwa Telecom Co., Ltd.Inventors: Chang-Lun Liao, You-Hua Lin, Jiahn-Wei Lin, Bo-Cheng You, Chang-Fa Yang, De-Xian Song, Wen-Jiao Liao, Yuan-Chang Hou, Tswen-Jiann Huang
-
Patent number: 11050132Abstract: A chip-type antenna structure includes a baseboard, a matching element, a radiation single body and a frequency-modulation element. The baseboard includes a first-ground surface, a first-clearance area and a signal-feed-in unit. A second-ground surface, a second-clearance area, a third-ground surface and a plurality of via holes through the baseboard and electrically connected to the first-ground surface and the second-ground surface are arranged on the other side of the baseboard. The matching element is electrically connected between the signal-feed-in unit and the first-ground surface. One side of the radiation single body is electrically connected to the signal-feed-in unit through the via holes. The other side of the radiation single body is electrically connected to the third-ground surface.Type: GrantFiled: November 21, 2019Date of Patent: June 29, 2021Assignee: POWER WAVE ELECTRONIC CO., LTD.Inventors: Wen-Jiao Liao, Yun-Chan Tsai, Shih-Hsun Hung, Shi-Hong Yang
-
Patent number: 11050149Abstract: A dual-band antenna is provided. The dual-band antenna includes a first antenna, a second antenna, and a grounding component. The first antenna has a first feed point for transceiving a first signal. The second antenna has a second feed point. The grounding component is electrically coupled to the first feed point and the second feed point, wherein the grounding component forms a first path and a second path between the first feed point and the second feed point, wherein a first path length of the first path and a second path length of the second path are integer multiples of a first wavelength of the first signal.Type: GrantFiled: November 13, 2019Date of Patent: June 29, 2021Assignee: COMPAL ELECTRONICS, INC.Inventors: Wen-Jiao Liao, Jhin-Ciang Chen, Shih-Chia Liu, Liang-Che Chou, Yen-Hao Yu, Li-Chun Lee
-
Publication number: 20210159583Abstract: A chip-type antenna structure includes a baseboard, a matching element, a radiation single body and a frequency-modulation element. The baseboard includes a first-ground surface, a first-clearance area and a signal-feed-in unit. A second-ground surface, a second-clearance area, a third-ground surface and a plurality of via holes through the baseboard and electrically connected to the first-ground surface and the second-ground surface are arranged on the other side of the baseboard. The matching element is electrically connected between the signal-feed-in unit and the first-ground surface. One side of the radiation single body is electrically connected to the signal-feed-in unit through the via holes. The other side of the radiation single body is electrically connected to the third-ground surface.Type: ApplicationFiled: November 21, 2019Publication date: May 27, 2021Inventors: Wen-Jiao LIAO, Yun-Chan TSAI, Shih-Hsun HUNG, Shi-Hong YANG
-
Patent number: 10847883Abstract: An enhanced printed circuit board monopole antenna includes a baseplate, a signal feed-in unit, a first-radiation unit, a second-radiation unit and an auxiliary ground unit. The first-radiation unit and the second-radiation unit are arranged on a front side and an edge side of the baseplate. The auxiliary ground unit is arranged on the edge side and electrically connected to a first ground unit and a second ground unit on the baseplate. Adjusting the first-radiation unit controls 88 MHZ-60 GHZ frequency range impedance, resonant frequency, bandwidth and radiation effect. According to the frequency wave length (1?, ½?, ¼? or ??) formed by the first-radiation unit and the second-radiation unit cooperating with each other, controlling 88 MHZ-60 GHZ frequency range achieves the predetermined target impedance, resonant frequency, bandwidth and radiation efficiency. The antenna radiation efficiency can be increased effectively.Type: GrantFiled: December 26, 2019Date of Patent: November 24, 2020Assignee: POWER WAVE ELECTRONIC CO., LTD.Inventors: Wen-Jiao Liao, Wei-Hong Tsai, Yun-Chan Tsai
-
Patent number: 10826178Abstract: A multi-band antenna including a ground portion, a first radiation portion, a second radiation portion, a feeding portion and a matching portion is provided. The first radiation portion is disposed beside the ground portion, a first gap is existed between the ground portion and the first radiation portion so as to form a first slot, and the first slot has a first open terminal located at the first gap. The second radiation portion is connected to the first radiation portion. The feeding portion is located between the first radiation portion and the second radiation portion. The matching portion is located in the first slot and connected to the first radiation portion and the ground portion. The feeding portion excites the first slot to generate a first resonant mode. The second radiation portion generates a second resonant mode.Type: GrantFiled: July 3, 2018Date of Patent: November 3, 2020Assignee: COMPAL ELECTRONICS, INC.Inventors: Wen-Jiao Liao, Hao-Ju Hsieh, Yen-Hao Yu, Shih-Chia Liu, Liang-Che Chou, Li-Chun Lee
-
Publication number: 20200161764Abstract: A dual-band antenna is provided. The dual-band antenna includes a first antenna, a second antenna, and a grounding component. The first antenna has a first feed point for transceiving a first signal. The second antenna has a second feed point. The grounding component is electrically coupled to the first feed point and the second feed point, wherein the grounding component forms a first path and a second path between the first feed point and the second feed point, wherein a first path length of the first path and a second path length of the second path are integer multiples of a first wavelength of the first signal.Type: ApplicationFiled: November 13, 2019Publication date: May 21, 2020Applicant: COMPAL ELECTRONICS, INC.Inventors: Wen-Jiao Liao, Jhin-Ciang Chen, Shih-Chia Liu, Liang-Che Chou, Yen-Hao Yu, Li-Chun Lee
-
Publication number: 20200136252Abstract: An enhanced printed circuit board monopole antenna includes a baseplate, a signal feed-in unit, a first-radiation unit, a second-radiation unit and an auxiliary ground unit. The first-radiation unit and the second-radiation unit are arranged on a front side and an edge side of the baseplate. The auxiliary ground unit is arranged on the edge side and electrically connected to a first ground unit and a second ground unit on the baseplate. Adjusting the first-radiation unit controls 88 MHZ-60 GHZ frequency range impedance, resonant frequency, bandwidth and radiation effect. According to the frequency wave length (1?, ½?, ¼? or ??) formed by the first-radiation unit and the second-radiation unit cooperating with each other, controlling 88 MHZ-60 GHZ frequency range achieves the predetermined target impedance, resonant frequency, bandwidth and radiation efficiency. The antenna radiation efficiency can be increased effectively.Type: ApplicationFiled: December 26, 2019Publication date: April 30, 2020Inventors: Wen-Jiao Liao, Wei-Hong Tsai, Yun-Chan Tsai
-
Patent number: 10595411Abstract: A method for manufacturing chip signal elements includes steps as follows. A substrate is provided. A plurality of through holes is drilled, and a plurality of side holes is formed along the through holes. A first cooper-plating process is performed to form a plurality of conductive layers electrically connected to the upper and the lower metal layer. A second cooper-plating process is performed to increase thickness of the conductive layers. A first and a second pattern layers are formed on the substrate by an etching. The first pattern layer is electrically connected to the second pattern layer to form a spiral radiator. An ink is printed on the substrate to cover the spiral radiator and form a solder mask layer. An organic metal process and a plating process are performed to form terminal electrodes. Finally, a single chip signal element having a spiral radiator is formed.Type: GrantFiled: May 10, 2017Date of Patent: March 17, 2020Assignee: POWER WAVE ELECTRONICS CO., LTD.Inventors: Wen-Jiao Liao, Wei-Hong Tsai
-
Patent number: 10418714Abstract: In an electronic switching beamforming antenna array, a coplanar feeding line of the antenna array is configured on a metal plane of a substrate, and a plurality of slot antennas of aforementioned antenna array are inclinedly configured on the metal plane and configured on at least one side of the coplanar feeding line. A slot coupling segment of slot antenna is configured at one end of the slot antenna and neighbored with the coplanar feeding line so as to make the slot antenna couple with the coplanar feeding line, and a switch device of the slot antenna is configured at one portion which between one part of the slot antenna and a grounding plane formed by the metal plane. When the switch device is triggered to configure a radiating feature of the slot antenna, the antenna array is able to achieve the purpose of setting beamforming direction.Type: GrantFiled: February 22, 2017Date of Patent: September 17, 2019Assignee: Chunghwa Telecom Co., Ltd.Inventors: Wen-Jiao Liao, Yan-Yun Lin, Chang-Fa Yang, Chang-Lun Liao
-
Patent number: 10348357Abstract: A single feed-in dual-band antenna structure includes a first radiation unit, a basal plate and a plurality of matching components. The basal plate includes a front side, a back side and an edge side. A first ground unit, a signal feed-in unit, a second radiation unit and an electrode part are arranged on the front side. A third radiation unit is arranged on the edge side. A second ground unit is arranged on the back side of the basal plate. The first radiation unit is electrically connected to the electrode part. The first radiation unit is adjusted to control the 2.45 GHZ frequency range impedance, resonant frequency, bandwidth and radiation effect. The third radiation unit frequency wave length controls the 5 GHZ frequency range to achieve the predetermined target impedance, resonant frequency, bandwidth and radiation efficiency. The antenna size can be reduced effectively.Type: GrantFiled: June 6, 2017Date of Patent: July 9, 2019Assignee: POWER WAVE ELECTRONIC CO., LTD.Inventors: Wen-Jiao Liao, Wei-Hong Tsai, Yun-Chan Tsai
-
Publication number: 20190006755Abstract: A multi-band antenna including a ground portion, a first radiation portion, a second radiation portion, a feeding portion and a matching portion is provided. The first radiation portion is disposed beside the ground portion, a first gap is existed between the ground portion and the first radiation portion so as to form a first slot, and the first slot has a first open terminal located at the first gap. The second radiation portion is connected to the first radiation portion. The feeding portion is located between the first radiation portion and the second radiation portion. The matching portion is located in the first slot and connected to the first radiation portion and the ground portion. The feeding portion excites the first slot to generate a first resonant mode. The second radiation portion generates a second resonant mode.Type: ApplicationFiled: July 3, 2018Publication date: January 3, 2019Applicant: COMPAL ELECTRONICS, INC.Inventors: Wen-Jiao Liao, Hao-Ju Hsieh, Yen-Hao Yu, Shih-Chia Liu, Liang-Che Chou, Li-Chun Lee
-
Publication number: 20180351258Abstract: An enhanced printed circuit board monopole antenna includes a baseplate, a signal feed-in unit, a first-radiation unit, a second-radiation unit and an auxiliary ground unit. The first-radiation unit and the second-radiation unit are arranged on a front side and an edge side of the baseplate. The auxiliary ground unit is arranged on the edge side and electrically connected to a first ground unit and a second ground unit on the baseplate. Adjusting the first-radiation unit controls 88 MHZ-60 GHZ frequency range impedance, resonant frequency, bandwidth and radiation effect. According to the frequency wave length (1?, ½?, ¼? or ??) formed by the first-radiation unit and the second-radiation unit cooperating with each other, controlling 88 MHZ-60 GHZ frequency range achieves the predetermined target impedance, resonant frequency, bandwidth and radiation efficiency. The antenna radiation efficiency can be increased effectively.Type: ApplicationFiled: June 5, 2017Publication date: December 6, 2018Inventors: Wen-Jiao Liao, Wei-Hong Tsai, Yun-Chan Tsai
-
Publication number: 20180351252Abstract: A single feed-in dual-band antenna structure includes a first radiation unit, a basal plate and a plurality of matching components. The basal plate includes a front side, a back side and an edge side. A first ground unit, a signal feed-in unit, a second radiation unit and an electrode part are arranged on the front side. A third radiation unit is arranged on the edge side. A second ground unit is arranged on the back side of the basal plate. The first radiation unit is electrically connected to the electrode part. The first radiation unit is adjusted to control the 2.45 GHZ frequency range impedance, resonant frequency, bandwidth and radiation effect. The third radiation unit frequency wave length controls the 5 GHZ frequency range to achieve the predetermined target impedance, resonant frequency, bandwidth and radiation efficiency. The antenna size can be reduced effectively.Type: ApplicationFiled: June 6, 2017Publication date: December 6, 2018Inventors: Wen-Jiao Liao, Wei-Hong Tsai, Yun-Chan Tsai
-
Publication number: 20180331417Abstract: A method for manufacturing chip signal elements includes steps as follows. A substrate is provided. A plurality of through holes is drilled, and a plurality of side holes is formed along the through holes. A first cooper-plating process is performed to form a plurality of conductive layers electrically connected to the upper and the lower metal layer. A second cooper-plating process is performed to increase thickness of the conductive layers. A first and a second pattern layers are formed on the substrate by an etching. The first pattern layer is electrically connected to the second pattern layer to form a spiral radiator. An ink is printed on the substrate to cover the spiral radiator and form a solder mask layer. An organic metal process and a plating process are performed to form terminal electrodes. Finally, a single chip signal element having a spiral radiator is formed.Type: ApplicationFiled: May 10, 2017Publication date: November 15, 2018Inventors: Wen-Jiao Liao, Wei-Hong Tsai
-
Publication number: 20180019519Abstract: In an electronic switching beamforming antenna array, a coplanar feeding line of the antenna array is configured on a metal plane of a substrate, and a plurality of slot antennas of aforementioned antenna array are inclinedly configured on the metal plane and configured on at least one side of the coplanar feeding line. A slot coupling segment of slot antenna is configured at one end of the slot antenna and neighbored with the coplanar feeding line so as to make the slot antenna couple with the coplanar feeding line, and a switch device of the slot antenna is configured at one portion which between one part of the slot antenna and a grounding plane formed by the metal plane. When the switch device is triggered to configure a radiating feature of the slot antenna, the antenna array is able to achieve the purpose of setting beamforming direction.Type: ApplicationFiled: February 22, 2017Publication date: January 18, 2018Inventors: Wen-Jiao Liao, Yan-Yun Lin, Chang-Fa Yang, Chang-Lun Liao