Patents by Inventor Wenkai Tu

Wenkai Tu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11817671
    Abstract: A wavelength selection method for a tunable laser includes: obtaining a target wavelength; and calculating target resistance values of two thermistors, respectively, corresponding to the target wavelength. Each of the two thermistors is used to monitor the temperature of a corresponding one of two wavelength selection components. Each of the target resistance values is calculated according to a relationship between a wavelength drift and a resistance change of the corresponding thermistor and according to an initial wavelength and an initial resistance value of the corresponding thermistor corresponding to the initial wavelength. The method further includes: heating the two wavelength selection components to control their temperatures until real-time resistance values of the two thermistors reach the target resistance values, respectively; and stabilizing the real-time resistance values at the target resistance values and outputting a laser beam having the target wavelength.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: November 14, 2023
    Assignee: InnoLight Technology (Suzhou) Ltd.
    Inventors: Liang Luo, Wenkai Tu, Jinan Gu
  • Publication number: 20230333332
    Abstract: An optical receiving assembly, a method for controlling the same, and an optical module are provided. The optical receiving assembly includes an optical receiving port, an adjustable optical path deflection assembly, a semiconductor optical amplifier, an optical detector, and a controller. An optical signal received by the optical receiving port is incident onto the semiconductor optical amplifier after a deflection angle of the optical signal is adjusted. The semiconductor optical amplifier amplifies and couples the incident optical signal to the optical detector, which converts the received optical signal into an electrical signal for output. The controller controls the adjustable optical path deflection assembly to adjust the deflection angle according to the changes of the electrical signal strength, so as to adjust a coupling efficiency of the optical signal coupled to the semiconductor optical amplifier and maintain the electrical signal output by the optical detector within a preset range.
    Type: Application
    Filed: June 26, 2023
    Publication date: October 19, 2023
    Inventors: Wenkai TU, Yuzhou SUN, Liang LUO
  • Publication number: 20230268718
    Abstract: Provided are a silicon-based tunable filter, laser and an optical module. The tunable laser comprises a semiconductor optical amplifier and a silicon photonic integrated chip, wherein a first coupler, a phase regulator and a tunable filter are provided on the silicon photonic integrated chip; the tunable filter comprises a flat-top band-pass filter structure, a Mach-Zehnder interferometry (MZI) structure and a micro ring resonation (MRR) structure, which are cascaded; gain light emitted by the semiconductor optical amplifier is coupled to the silicon photonic integrated chip by means of the first coupler, and a narrowband filtered optical signal is output by means of the tunable filter; and the phase of the gain light is regulated by means of the phase regulator so as to output single-peak narrowband laser light with a tunable target wavelength.
    Type: Application
    Filed: June 2, 2021
    Publication date: August 24, 2023
    Applicant: INNOLIGHT TECHNOLOGY (SUZHOU) LTD.
    Inventors: Defen GUO, Xianyao LI, Wenkai TU, Yuzhou SUN, Tianhua LIN
  • Publication number: 20220329036
    Abstract: A wavelength selection method for a tunable laser includes: obtaining a target wavelength; and calculating target resistance values of two thermistors, respectively, corresponding to the target wavelength. Each of the two thermistors is used to monitor the temperature of a corresponding one of two wavelength selection components. Each of the target resistance values is calculated according to a relationship between a wavelength drift and a resistance change of the corresponding thermistor and according to an initial wavelength and an initial resistance value of the corresponding thermistor corresponding to the initial wavelength. The method further includes: heating the two wavelength selection components to control their temperatures until real-time resistance values of the two thermistors reach the target resistance values, respectively; and stabilizing the real-time resistance values at the target resistance values and outputting a laser beam having the target wavelength.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 13, 2022
    Inventors: Liang LUO, Wenkai TU, Jinan GU
  • Patent number: 11394167
    Abstract: A wavelength selection method for a tunable laser includes: obtaining a target wavelength; and calculating target resistance values of two thermistors, respectively, corresponding to the target wavelength. Each of the two thermistors is used to monitor the temperature of a corresponding one of two wavelength selection components. Each of the target resistance values is calculated according to a relationship between a wavelength drift and a resistance change of the corresponding thermistor and according to an initial wavelength and an initial resistance value of the corresponding thermistor corresponding to the initial wavelength. The method further includes: heating the two wavelength selection components to control their temperatures until real-time resistance values of the two thermistors reach the target resistance values, respectively; and stabilizing the real-time resistance values at the target resistance values and outputting a laser beam having the target wavelength.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: July 19, 2022
    Assignee: InnoLight Technology (Suzhou) Ltd.
    Inventors: Liang Luo, Wenkai Tu, Jinan Gu
  • Patent number: 11171463
    Abstract: A narrow-linewidth tunable external cavity laser includes, sequentially arranged along an optical path, a laser gain chip, a collimating lens, a bandpass filter, a tunable filter, and an output cavity surface. The laser gain chip includes a first end surface and a second end surface positioned along the optical path. The first end surface is further away from the collimating lens and is coated with a highly reflective film to form an external cavity with the output cavity surface.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: November 9, 2021
    Assignee: InnoLight Technology (Suzhou) Ltd.
    Inventors: Wenkai Tu, Jinan Gu, Liang Luo, Yuzhou Sun
  • Publication number: 20210036489
    Abstract: A narrow linewidth external cavity laser includes a sealed housing, an external resonant cavity disposed in the sealed housing, and a gain chip and a tunable wavelength selective component disposed in the external resonant cavity. An electrical interface of the sealed housing is configured to receive an electrical signal such as a drive signal, a wave selection signal, a cavity length control signal, and a dither control signal. The cavity length control signal is configured to adjust an optical cavity length of the external resonant cavity so that a laser mode produced in the external resonant cavity aligns with a wavelength selected by the wavelength selective component. The dither control signal is configured to control the optical cavity length of the external resonant cavity to produce dither by adjusting an optical length of the gain chip in order to lock a center wavelength of an output light beam.
    Type: Application
    Filed: July 31, 2020
    Publication date: February 4, 2021
    Inventors: Wenkai TU, Liang LUO
  • Publication number: 20210036487
    Abstract: A tunable laser includes a housing having a sealable accommodating cavity, an optical interface and an electrical interface disposed on the housing, a tunable semiconductor laser apparatus, a splitter component, and a photodetector. The tunable semiconductor laser apparatus is disposed in the accommodating cavity for emitting an optical signal whose wavelength is tunable. An electrical signal inputted through the electrical interface controls the tunable semiconductor laser apparatus to emit the optical signal. The optical signal is outputted through the optical interface. The splitter component and the photodetector are disposed outside the housing. The optical signal is split into at least two beams of light by the splitter component after the optical signal is outputted through the optical interface. The photodetector is configured to receive one of the beams of light to monitor the optical signal emitted by the tunable semiconductor laser apparatus.
    Type: Application
    Filed: July 31, 2020
    Publication date: February 4, 2021
    Inventors: Liang LUO, Wenkai TU, Jinan GU, Yuzhou SUN
  • Publication number: 20200280170
    Abstract: A narrow-linewidth tunable external cavity laser includes, sequentially arranged along an optical path, a laser gain chip, a collimating lens, a bandpass filter, a tunable filter, and an output cavity surface. The laser gain chip includes a first end surface and a second end surface positioned along the optical path. The first end surface is further away from the collimating lens and is coated with a highly reflective film to form an external cavity with the output cavity surface.
    Type: Application
    Filed: November 15, 2019
    Publication date: September 3, 2020
    Inventors: Wenkai TU, Jinan GU, Liang LUO, Yuzhou SUN
  • Publication number: 20200083660
    Abstract: A wavelength selection method for a tunable laser includes: obtaining a target wavelength; and calculating target resistance values of two thermistors, respectively, corresponding to the target wavelength. Each of the two thermistors is used to monitor the temperature of a corresponding one of two wavelength selection components. Each of the target resistance values is calculated according to a relationship between a wavelength drift and a resistance change of the corresponding thermistor and according to an initial wavelength and an initial resistance value of the corresponding thermistor corresponding to the initial wavelength. The method further includes: heating the two wavelength selection components to control their temperatures until real-time resistance values of the two thermistors reach the target resistance values, respectively; and stabilizing the real-time resistance values at the target resistance values and outputting a laser beam having the target wavelength.
    Type: Application
    Filed: September 10, 2019
    Publication date: March 12, 2020
    Inventors: Liang LUO, Wenkai TU, Jinan GU
  • Patent number: 10228524
    Abstract: The invention discloses an optical device and an optical module, the optical device includes a collimation lens arranged on an outer surface for converting incident light from a light source to parallel light, further includes a transmission light total reflection surface for totally reflecting a part of the parallel light at a first angle so that the part of the parallel light is finally coupled to an external optical fiber, a detection light total reflection surface for totally reflecting a part of the parallel light at a second angle so that the part of the parallel light is finally coupled to an external optical detector, and at least one attenuation light reflection surface for totally reflecting parallel light to be attenuated at a third angle before the parallel light leaves the optical device. The invention achieves the light intensity attenuation while realizing the direction-changing transmission of light signals.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: March 12, 2019
    Assignees: HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES CO., LTD., HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES, LTD.
    Inventors: Yungliang Huang, Yicheng Liu, Wenkai Tu
  • Publication number: 20170199342
    Abstract: The invention discloses an optical device and an optical module, the optical device includes a collimation lens arranged on an outer surface for converting incident light from a light source to parallel light, further includes a transmission light total reflection surface for totally reflecting a part of the parallel light at a first angle so that the part of the parallel light is finally coupled to an external optical fiber, a detection light total reflection surface for totally reflecting a part of the parallel light at a second angle so that the part of the parallel light is finally coupled to an external optical detector, and at least one attenuation light reflection surface for totally reflecting parallel light to be attenuated at a third angle before the parallel light leaves the optical device. The invention achieves the light intensity attenuation while realizing the direction-changing transmission of light signals.
    Type: Application
    Filed: March 28, 2017
    Publication date: July 13, 2017
    Inventors: YUNGLIANG HUANG, YICHENG LIU, WENKAI TU
  • Patent number: 9644818
    Abstract: The invention discloses an optical device and an optical module, the optical device includes a collimation lens arranged on an outer surface for converting incident light from a light source to parallel light, further includes a transmission light total reflection surface for totally reflecting a part of the parallel light at a first angle so that the part of the parallel light is finally coupled to an external optical fiber, a detection light total reflection surface for totally reflecting a part of the parallel light at a second angle so that the part of the parallel light is finally coupled to an external optical detector, and at least one attenuation light reflection surface for totally reflecting parallel light to be attenuated at a third angle before the parallel light leaves the optical device. The invention achieves the light intensity attenuation while realizing the direction-changing transmission of light signals.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: May 9, 2017
    Assignees: HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES CO., LTD., HISENSE USA CORPORATION
    Inventors: Yungliang Huang, Yicheng Liu, Wenkai Tu
  • Publication number: 20140299752
    Abstract: The invention discloses an optical device and an optical module, the optical device includes a collimation lens arranged on an outer surface for converting incident light from a light source to parallel light, further includes a transmission light total reflection surface for totally reflecting a part of the parallel light at a first angle so that the part of the parallel light is finally coupled to an external optical fiber, a detection light total reflection surface for totally reflecting a part of the parallel light at a second angle so that the part of the parallel light is finally coupled to an external optical detector, and at least one attenuation light reflection surface for totally reflecting parallel light to be attenuated at a third angle before the parallel light leaves the optical device. The invention achieves the light intensity attenuation while realizing the direction-changing transmission of light signals.
    Type: Application
    Filed: March 4, 2014
    Publication date: October 9, 2014
    Applicants: HISENSE USA CORPORATION, HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES CO., LTD.
    Inventors: YUNGLIANG HUANG, Yicheng Liu, Wenkai Tu