Patents by Inventor Wen-li Wu

Wen-li Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094148
    Abstract: This disclosure relates to an X-ray reflectometry apparatus and a method for measuring a three-dimensional nanostructure on a flat substrate. The X-ray reflectometry apparatus comprises an X-ray source, an X-ray reflector, a 2-dimensional X-ray detector, and a two-axis moving device. The X-ray source is for emitting X-ray. The X-ray reflector is configured for reflecting the X-ray onto a sample surface. The 2-dimensional X-ray detector is configured to collect a reflecting X-ray signal from the sample surface. The two-axis moving device is configured to control two-axis directions of the 2-dimensional X-ray detector to move on at least one of x-axis and z-axis with a formula concerning an incident angle of the X-ray with respect to the sample surface for collecting the reflecting X-ray signal.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 21, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Bo-Ching HE, Chun-Ting LIU, Wei-En FU, Wen-Li WU
  • Publication number: 20240083742
    Abstract: A micro electro mechanical system (MEMS) includes a circuit substrate comprising electronic circuitry, a support substrate having a recess, a bonding layer disposed between the circuit substrate and the support substrate, through holes passing through the circuit substrate to the recess, a first conductive layer disposed on a front side of the circuit substrate, and a second conductive layer disposed on an inner wall of the recess. The first conductive layer extends into the through holes and the second conductive layer extends into the through holes and coupled to the first conductive layer.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Li YANG, Kai-Di WU, Ming-Da CHENG, Wen-Hsiung LU, Cheng Jen LIN, Chin Wei KANG
  • Patent number: 11915359
    Abstract: Systems, apparatuses, and methods for implementing kernel software driven color remapping of rendered primary surfaces are disclosed. A system includes at least a general processor, a graphics processor, and a memory. The general processor executes a user-mode application, a user-mode driver, and a kernel-mode driver. A primary surface is rendered on the graphics processor on behalf of the user-mode application. The primary surface is stored in memory locations allocated for the primary surface by the user-mode driver and the kernel-mode driver is notified when the primary surface is ready to be displayed. Rather than displaying the primary surface, the kernel-mode driver causes the pixels of the primary surface to be remapped on the graphics processor using a selected lookup table (LUT) so as to generate a remapped surface which stored in memory locations allocated for the remapped surface by the user-mode driver. Then, the remapped surface is displayed.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: February 27, 2024
    Assignees: Advanced Micro Devices, Inc., ATI Technologies ULC
    Inventors: Jason Wen-Tse Wu, Parimalkumar Patel, Jia Hui Li, Chao Zhan
  • Patent number: 11867595
    Abstract: This disclosure relates to an apparatus and methods for applying X-ray reflectometry (XRR) in characterizing three dimensional nanostructures supported on a flat substrate with a miniscule sampling area and a thickness in nanometers. In particular, this disclosure is targeted for addressing the difficulties encountered when XRR is applied to samples with intricate nanostructures along all three directions, e.g. arrays of nanostructured poles or shafts. Convergent X-ray with long wavelength, greater than that from a copper anode of 0.154 nm and less than twice of the characteristic dimensions along the film thickness direction, is preferably used with appropriate collimations on both incident and detection arms to enable the XRR for measurements of samples with limited sample area and scattering volumes. In one embodiment, the incident angle of the long-wavelength focused X-ray is ?24°, and the sample area is ?25 ?m×25 ?m.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: January 9, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Ting Liu, Wen-Li Wu, Bo-Ching He, Guo-Dung Chen, Sheng-Hsun Wu, Wei-En Fu
  • Patent number: 11579099
    Abstract: This disclosure relates to an apparatus and methods for applying X-ray reflectometry (XRR) in characterizing three dimensional nanostructures supported on a flat substrate with a miniscule sampling area and a thickness in nanometers. In particular, this disclosure is targeted for addressing the difficulties encountered when XRR is applied to samples with intricate nanostructures along all three directions, e.g. arrays of nanostructured poles or shafts. Convergent X-ray with long wavelength, greater than that from a copper anode of 0.154 nm and less than twice of the characteristic dimensions along the film thickness direction, is preferably used with appropriate collimations on both incident and detection arms to enable the XRR for measurements of samples with limited sample area and scattering volumes.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: February 14, 2023
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Ting Liu, Wen-Li Wu, Bo-Ching He, Guo-Dung Chen, Sheng-Hsun Wu, Wei-En Fu
  • Publication number: 20220273732
    Abstract: Some embodiments include bacterial species for use in treatment of social behavioral deficit symptoms in a subject in need thereof. The bacterial species can include Enterococcus faecalis. Upon treatment, one or more symptoms of behavioral deficit can be improved in the subject.
    Type: Application
    Filed: February 24, 2022
    Publication date: September 1, 2022
    Inventors: Sarkis K MAZMANIAN, Wen-Li WU, Mark D ADAME, Brittany NEEDHAM
  • Publication number: 20220120561
    Abstract: This disclosure relates to an apparatus and methods for applying X-ray reflectometry (XRR) in characterizing three dimensional nanostructures supported on a flat substrate with a miniscule sampling area and a thickness in nanometers. In particular, this disclosure is targeted for addressing the difficulties encountered when XRR is applied to samples with intricate nanostructures along all three directions, e.g. arrays of nanostructured poles or shafts. Convergent X-ray with long wavelength, greater than that from a copper anode of 0.154 nm and less than twice of the characteristic dimensions along the film thickness direction, is preferably used with appropriate collimations on both incident and detection arms to enable the XRR for measurements of samples with limited sample area and scattering volumes. In one embodiment, the incident angle of the long-wavelength focused X-ray is ?24°, and the sample area is ?25 ?m×25 ?m.
    Type: Application
    Filed: November 22, 2021
    Publication date: April 21, 2022
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Ting LIU, Wen-Li WU, Bo-Ching HE, Guo-Dung CHEN, Sheng-Hsun WU, Wei-En FU
  • Patent number: 11287253
    Abstract: The present disclosure relates to a device and a method for measuring a thickness of an ultrathin film on a solid substrate. The thickness of the target ultrathin film is measured from the intensity of the fluorescence converted by the substrate and leaking and tunneling through the target ultrathin film at low detection angle. The fluorescence generated from the substrate has sufficient and stable high intensity, and therefore can provide fluorescence signal strong enough to make the measurement performed rapidly and precisely. The detection angle is small, and therefore the noise ratio is low, and efficiency of thickness measurement according to the method disclosed herein is high. The thickness measurement method can be applied into In-line product measurement without using standard sample, and therefore the thickness of the product can be measured rapidly and efficiently.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: March 29, 2022
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Ting Liu, Han-Yu Chang, Bo-Ching He, Guo-Dung Chen, Wen-Li Wu, Wei-En Fu
  • Publication number: 20210199428
    Abstract: The present disclosure relates to a device and a method for measuring a thickness of an ultrathin film on a solid substrate. The thickness of the target ultrathin film is measured from the intensity of the fluorescence converted by the substrate and leaking and tunneling through the target ultrathin film at low detection angle. The fluorescence generated from the substrate has sufficient and stable high intensity, and therefore can provide fluorescence signal strong enough to make the measurement performed rapidly and precisely. The detection angle is small, and therefore the noise ratio is low, and efficiency of thickness measurement according to the method disclosed herein is high. The thickness measurement method can be applied into In-line product measurement without using standard sample, and therefore the thickness of the product can be measured rapidly and efficiently.
    Type: Application
    Filed: December 30, 2019
    Publication date: July 1, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Ting LIU, Han-Yu CHANG, Bo-Ching HE, Guo-Dung CHEN, Wen-Li WU, Wei-En FU
  • Publication number: 20210109042
    Abstract: This disclosure relates to an apparatus and methods for applying X-ray reflectometry (XRR) in characterizing three dimensional nanostructures supported on a flat substrate with a miniscule sampling area and a thickness in nanometers. In particular, this disclosure is targeted for addressing the difficulties encountered when XRR is applied to samples with intricate nanostructures along all three directions, e.g. arrays of nanostructured poles or shafts. Convergent X-ray with long wavelength, greater than that from a copper anode of 0.154 nm and less than twice of the characteristic dimensions along the film thickness direction, is preferably used with appropriate collimations on both incident and detection arms to enable the XRR for measurements of samples with limited sample area and scattering volumes.
    Type: Application
    Filed: September 29, 2020
    Publication date: April 15, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Ting LIU, Wen-Li WU, Bo-Ching HE, Guo-Dung CHEN, Sheng-Hsun WU, Wei-En FU
  • Patent number: 10424458
    Abstract: An electron reflectometer includes: a sample stage; a source that produces source electrons; a source collimator; and an electron detector that receives collimated reflected electrons.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: September 24, 2019
    Assignee: GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Lawrence H. Friedman, Wen-Li Wu
  • Publication number: 20190057834
    Abstract: An electron reflectometer includes: a sample stage; a source that produces source electrons; a source collimator; and an electron detector that receives collimated reflected electrons.
    Type: Application
    Filed: May 15, 2018
    Publication date: February 21, 2019
    Inventors: Lawrence H. Friedman, Wen-Li WU
  • Patent number: 10151713
    Abstract: This application relates to an apparatus and methods for enhancing the performance of X-ray reflectometry (XRR) when used in characterizing thin films and nanostructures supported on a flat substrate. In particular, this application is targeted for addressing the difficulties encountered when XRR is applied to samples with very limited sampling volume, i.e. a combination of small sampling area and miniscule sample thickness or structure height. Point focused X-ray with long wavelength, greater than that from a copper anode or 0.154 nm, is preferably used with appropriately controlled collimations on both incident and detection arms to enable the XRR measurements of samples with limited volumes.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: December 11, 2018
    Assignees: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Li Wu, Yun-San Chien, Wei-En Fu, Shyh-Shin Ferng, Yi-Hung Lin
  • Patent number: 9847242
    Abstract: The disclosure provides an apparatus for aligning first and second plates that are parallel to each other and have the same orientation. The apparatus includes a detector that detects composite small-angle X-ray scattering emitted from patterns of the first and second plates that are perpendicularly impinged by X-ray, and a moving unit that aligns the first and second plates according to a composite amplitude distribution of the composite small-angle X-ray scattering. Therefore, the first and second plates are aligned to each other accurately.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: December 19, 2017
    Assignee: Industrial Technology Research Institute
    Inventors: Wen-Li Wu, Yen-Song Chen, Wei-En Fu, Yun-San Chien, Hsin-Chia Ho
  • Publication number: 20160341674
    Abstract: This application relates to an apparatus and methods for enhancing the performance of X-ray reflectometry (XRR) when used in characterizing thin films and nanostructures supported on a flat substrate. In particular, this application is targeted for addressing the difficulties encountered when XRR is applied to samples with very limited sampling volume, i.e. a combination of small sampling area and miniscule sample thickness or structure height. Point focused X-ray with long wavelength, greater than that from a copper anode or 0.154 nm, is preferably used with appropriately controlled collimations on both incident and detection arms to enable the XRR measurements of samples with limited volumes.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Inventors: Wen-Li WU, Yun-San Chien, Wei-En Fu, Shyh-Shin Ferng, Yi-Hung Lin
  • Patent number: 9390888
    Abstract: An apparatus and methods for small-angle electron beam scattering measurements in a reflection or a backscattering mode are provided. The apparatus includes an electron source, electron collimation optics before a sample, electron projection optics after the sample, a sample stage capable of holding the sample, and a electron detector module. The electrons emitted from the source are collimated and positioned to impinge nanostructures on the sample. The signals resulting from the interactions between the impinging electrons and the nanostructures are further magnified by the electron projection optics to reach a sufficient angular resolution before recorded by the electron detector module.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: July 12, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Wen-Li Wu, Yun-San Chien, Wei-En Fu, Yen-Song Chen, Hsin-Chia Ho
  • Publication number: 20160187267
    Abstract: The disclosure provides an apparatus for aligning first and second plates that are parallel to each other and have the same orientation. The apparatus includes a detector that detects composite small-angle X-ray scattering emitted from patterns of the first and second plates that are perpendicularly impinged by X-ray, and a moving unit that aligns the first and second plates according to a composite amplitude distribution of the composite small-angle X-ray scattering. Therefore, the first and second plates are aligned to each other accurately.
    Type: Application
    Filed: December 24, 2014
    Publication date: June 30, 2016
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wen-Li Wu, Yen-Song Chen, Wei-En Fu, Yun-San Chien, Hsin-Chia Ho
  • Patent number: 9297772
    Abstract: The disclosure provides an apparatus for amplifying scattering intensity during tSAXS measurements. The apparatus includes an enhancement grating object and a placement mechanism. The enhancement grating object is positioned within a longitudinal coherence length of an incident X-ray from a target object. The placement mechanism is capable of placing the enhancement grating object with nanometer precision with respect to the target object in both a lateral and a longitudinal directions.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: March 29, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Wei-En Fu, Wen-Li Wu
  • Publication number: 20150340201
    Abstract: An apparatus and methods for small-angle electron beam scattering measurements in a reflection or a backscattering mode are provided. The apparatus includes an electron source, electron collimation optics before a sample, electron projection optics after the sample, a sample stage capable of holding the sample, and a electron detector module. The electrons emitted from the source are collimated and positioned to impinge nanostructures on the sample. The signals resulting from the interactions between the impinging electrons and the nanostructures are further magnified by the electron projection optics to reach a sufficient angular resolution before recorded by the electron detector module.
    Type: Application
    Filed: May 22, 2015
    Publication date: November 26, 2015
    Inventors: Wen-Li Wu, Yun-San Chien, Wei-En Fu, Yen-Song Chen, Hsin-Chia Ho
  • Publication number: 20150036805
    Abstract: The disclosure provides an apparatus for amplifying scattering intensity during tSAXS measurements. The apparatus includes an enhancement grating object and a placement mechanism. The enhancement grating object is positioned within a longitudinal coherence length of an incident X-ray from a target object. The placement mechanism is capable of placing the enhancement grating object with nanometer precision with respect to the target object in both a lateral and a longitudinal directions.
    Type: Application
    Filed: April 7, 2014
    Publication date: February 5, 2015
    Applicant: Industrial Technology Research Institute
    Inventors: Wei-En FU, Wen-Li WU