Patents by Inventor Wen-Long Jang

Wen-Long Jang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8404608
    Abstract: Plasma modifications of catalyst supports before and after impregnation of metal precursors improve the activity, selectivity and stability of catalysts, e.g. Ni catalysts for benzene hydrogenation and Pd catalysts for selective hydrogenation of acetylene. Plasma modification of the support before impregnation is slightly more effective than the plasma modification after impregnation. However, plasma modifications after impregnation increase the stability and selectivity of catalysts more effectively. The economic benefit of much improved stability of Ni catalysts for hydrogenation of benzene and the enhanced activity and selectivity of Pd catalysts for acetylene hydrogenation, e.g., is significant. Similar benefits for various catalysts and other industrial processes via RF plasma techniques are expected.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: March 26, 2013
    Assignee: The Texas A&M University System
    Inventors: Wen-Long Jang, Chalita Ratanatawanate
  • Publication number: 20090163355
    Abstract: Plasma modifications of catalyst supports before and after impregnation of metal precursors improve the activity, selectivity and stability of catalysts, e.g. Ni catalysts for benzene hydrogenation and Pd catalysts for selective hydrogenation of acetylene. Plasma modification of the support before impregnation is slightly more effective than the plasma modification after impregnation. However, plasma modifications after impregnation increase the stability and selectivity of catalysts more effectively. The economic benefit of much improved stability of Ni catalysts for hydrogenation of benzene and the enhanced activity and selectivity of Pd catalysts for acetylene hydrogenation, e.g., is significant. Similar benefits for various catalysts and other industrial processes via RF plasma techniques are expected.
    Type: Application
    Filed: August 31, 2007
    Publication date: June 25, 2009
    Inventors: Wen-Long Jang, Chalita Ratanatawanate
  • Publication number: 20080161182
    Abstract: Plasma modifications of catalyst supports before and after impregnation of metal precursors improve the activity, selectivity and stability of catalysts, e.g. Ni catalysts for benzene hydrogenation and Pd catalysts for selective hydrogenation of acetylene. Plasma modification of the support before impregnation is slightly more effective than the plasma modification after impregnation. However, plasma modifications after impregnation increase the stability and selectivity of catalysts more effectively. The economic benefit of much improved stability of Ni catalysts for hydrogenation of benzene and the enhanced activity and selectivity of Pd catalysts for acetylene hydrogenation, e.g., is significant. Similar benefits for various catalysts and other industrial processes via RF plasma techniques are expected.
    Type: Application
    Filed: August 31, 2007
    Publication date: July 3, 2008
    Inventors: Wen-Long Jang, Chalita Ratanatawanate
  • Patent number: 5276240
    Abstract: A novel catalytic process involving complete hydrodehalogenation of halogenated aliphatic hydrocarbons in the presence of a hydrogen donor and a modified zeolite catalyst has been developed. The process is operated in a continuous flow mode and reaction products consist exclusively of hydrogen halide and hydrocarbons. The relative ratio of paraffins to olefins to aromatics obtained in the product distribution is a strong function of the ratio of hydrogen to reactant and the space velocity and temperature employed. The catalyst employed is a nickel metal modified shape selective zeolite that takes advantage of the hydrogenolysis ability of nickel and the acidic-shape selective properties of the zeolite.
    Type: Grant
    Filed: October 16, 1992
    Date of Patent: January 4, 1994
    Assignee: Board of Regents, The University of Texas System
    Inventors: Richard B. Timmons, Wen-Long Jang, Yigong He, David J. Houpt, Jr.
  • Patent number: 5118893
    Abstract: The invention relates to an efficient process for the production of higher hydrocarbon from the catalyzed conversion of acetylene. This invention describes the use of a nickel or cobalt-containing zeolite catalyst, coupled with the addition of a hydrogen donor co-reactant to the acetylene feed, to obtain continuous and complete conversion of acetylene to other hydrocarbons. The catalyst/reactant feed process described eliminates rapid catalyst deactivation.
    Type: Grant
    Filed: May 24, 1991
    Date of Patent: June 2, 1992
    Assignee: Board of Regents, The University of Texas System
    Inventors: Richard B. Timmons, Yigong He, Wen-Long Jang