Patents by Inventor Wen-Lung Kuang

Wen-Lung Kuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11194107
    Abstract: The high-density FAU comprises a support substrate having a grooved front-end section that supports glass end sections of the small diameter low-attenuation optical fibers. A cover is disposed on the front-end section and secured thereto to hold the glass end sections in place. The substrate and the cover can be made of the same glass or glasses having about the same CTE. The glass end sections have a diameter d4 so that the pitch P2 of the fibers at the front end of the FAU can be equal to or greater than d4, wherein d4=2r4, with r4 being the radius of the glass end section as defined by the optical fiber cladding. The glass end section has a radius r4 less than 45 microns, allowing for a high-density FAU and a high-density optical interconnection device.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: December 7, 2021
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Ximao Feng, Wen-Lung Kuang, Pushkar Tandon, Ruchi Tandon, Shudong Xiao, Bryan William Wakefield, Andy Fenglei Zhou
  • Patent number: 11105981
    Abstract: Detachable optical connectors for optical chips and methods of their fabrication are disclosed. In one embodiment, an optical connector includes a ferrule that supports ferrule waveguides. The optical connector further includes a waveguide support coupled to the ferrule and that supports transition waveguides that are optically coupled to the ferrule waveguides. Ends of the ferrule waveguides are exposed at one end of the ferrule to define a first pitch while ends of the second waveguides are exposed at a chip coupling surface of the waveguide support. The transition waveguides provide at least one type of transition for the guided light traveling within the ferrule waveguides to enable either edge coupling, surface coupling or evanescent coupling to chip waveguides of an optical chip. The transition can include a change in mode-field diameter, direction of the guided light, and/or pitch.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: August 31, 2021
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Lars Martin Otfried Brusberg, Ximao Feng, Wen-Lung Kuang
  • Publication number: 20210055490
    Abstract: The high-density FAU comprises a support substrate having a grooved front-end section that supports glass end sections of the small diameter low-attenuation optical fibers. A cover is disposed on the front-end section and secured thereto to hold the glass end sections in place. The substrate and the cover can be made of the same glass or glasses having about the same CTE. The glass end sections have a diameter d4 so that the pitch P2 of the fibers at the front end of the FAU can be equal to or greater than d4, wherein d4=2r4, with r4 being the radius of the glass end section as defined by the optical fiber cladding. The glass end section has a radius r4 less than 45 microns, allowing for a high-density FAU and a high-density optical interconnection device.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 25, 2021
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Ximao Feng, Wen-Lung Kuang, Pushkar Tandon, Ruchi Tandon, Shudong Xiao, Bryan William Wakefield, Andy Fenglei Zhou
  • Patent number: 10816326
    Abstract: A polarization maintaining fiber array includes a substrate, a cover, and at least two polarization maintaining optical fibers. The substrate includes at least two main grooves, a first additional groove, and a second additional groove, wherein the main grooves are positioned between the first additional groove and the second additional groove. The fiber array includes at least two polarization maintaining optical fibers positioned in the at least two main grooves, a first dummy fiber positioned in the first additional groove, and a second dummy fiber positioned in the second additional groove. The cover is positioned such that it contacts the polarization maintaining optical fibers, the first dummy fiber, and the second dummy fiber.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: October 27, 2020
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Chia-Hang Chang, Ximao Feng, Wen-Lung Kuang, Andy Fenglei Zhou
  • Publication number: 20200096324
    Abstract: A polarization maintaining fiber array includes a substrate, a cover, and at least two polarization maintaining optical fibers. The substrate includes at least two main grooves, a first additional groove, and a second additional groove, wherein the main grooves are positioned between the first additional groove and the second additional groove. The fiber array includes at least two polarization maintaining optical fibers positioned in the at least two main grooves, a first dummy fiber positioned in the first additional groove, and a second dummy fiber positioned in the second additional groove. The cover is positioned such that it contacts the polarization maintaining optical fibers, the first dummy fiber, and the second dummy fiber.
    Type: Application
    Filed: September 4, 2019
    Publication date: March 26, 2020
    Inventors: Chia-Hang Chang, Ximao Feng, Wen-Lung Kuang, Andy Fenglei Zhou
  • Publication number: 20190384005
    Abstract: Detachable optical connectors for optical chips and methods of their fabrication are disclosed. In one embodiment, an optical connector includes a ferrule that supports ferrule waveguides. The optical connector further includes a waveguide support coupled to the ferrule and that supports transition waveguides that are optically coupled to the ferrule waveguides. Ends of the ferrule waveguides are exposed at one end of the ferrule to define a first pitch while ends of the second waveguides are exposed at a chip coupling surface of the waveguide support. The transition waveguides provide at least one type of transition for the guided light traveling within the ferrule waveguides to enable either edge coupling, surface coupling or evanescent coupling to chip waveguides of an optical chip. The transition can include a change in mode-field diameter, direction of the guided light, and/or pitch.
    Type: Application
    Filed: June 7, 2019
    Publication date: December 19, 2019
    Inventors: Lars Martin Otfried Brusberg, Ximao Feng, Wen-Lung Kuang
  • Patent number: 10012804
    Abstract: A bend inducing fiber array unit is provided comprising first and second anti-recovery plates and a V-groove chip. Opposing lateral anti-recovery plates are arranged on opposite sides of the first and second anti-recovery plates. Lateral edges on a common side of the anti-recovery plates are secured to a common face of one of the opposing lateral anti-recovery plates to fix the first and second anti-recovery plates relative to each other. A guided portion of the array of optical fibers is positioned in the fiber accommodating grooves of the V-groove chip and the V-groove chip is secured to the second anti-recovery plate such that the fiber accommodating grooves and a fiber guiding face of the first anti-recovery plate are fixed at a relative angle ? approximating the bend in the array of optical fibers.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: July 3, 2018
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Wen-Lung Kuang, Yao Li, Ximao Feng
  • Publication number: 20170343743
    Abstract: A bend inducing fiber array unit is provided comprising first and second anti-recovery plates and a V-groove chip. Opposing lateral anti-recovery plates are arranged on opposite sides of the first and second anti-recovery plates. Lateral edges on a common side of the anti-recovery plates are secured to a common face of one of the opposing lateral anti-recovery plates to fix the first and second anti-recovery plates relative to each other. A guided portion of the array of optical fibers is positioned in the fiber accommodating grooves of the V-groove chip and the V-groove chip is secured to the second anti-recovery plate such that the fiber accommodating grooves and a fiber guiding face of the first anti-recovery plate are fixed at a relative angle ? approximating the bend in the array of optical fibers.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 30, 2017
    Applicant: Alliance Fiber Optic Products, Inc.
    Inventors: Wen-Lung Kuang, Yao Li, Ximao Feng
  • Patent number: 9709750
    Abstract: The present disclosure relates to a two-dimensional fiber array structure including a base which includes a baseboard, a cover board and a spacer layer, and an optical fiber cable is positioned between the baseboard and the cover board, positioning fibers are positioned at two external sides of the optical fiber cable, the spacer layer is abutted with two adjacent fiber layers of the optical fiber cable to reduce the position tolerance along X axis for further improving accuracy, whereby ensuring quality and stability of transmitting optical signal.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: July 18, 2017
    Assignee: Alliance Fiber Optic Products Inc.
    Inventors: Wen-Lung Kuang, Ming-Sung Wu
  • Publication number: 20130170789
    Abstract: An optical fiber array structure includes a substrate covered with a cover plate and defining therebetween a longitudinal rectangular groove with a bottom wall and two opposite lateral contact walls, an optical fiber cable consisting of multiple optical fiber layers arranged in an array in the longitudinal rectangular groove in such a manner that the optical fibers of each two adjacent optical fiber layers are arranged in a staggered manner so that the center of one optical fiber of one optical fiber layer is kept in alignment with the contact area between two adjacent optical fibers of one adjacent optical fiber layer. This design effectively reduces light loss, phase noise and crosstalk, improves yield rate for mass production and assures a high level of optical signal transmission quality and reliability.
    Type: Application
    Filed: June 18, 2012
    Publication date: July 4, 2013
    Inventor: Wen-Lung Kuang