Patents by Inventor Wen-Mei Zhao

Wen-Mei Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130109986
    Abstract: An electrode lead of a pacemaker includes a lead wire. The lead wire includes at least one sub-lead wire and an electrode head. The sub-lead wire includes a core wire structure, a first insulating layer and a carbon nanotube composite structure. The first insulating layer coats on an outer surface of the core wire structure. The carbon nanotube composite structure is wound around an outer surface of the core wire structure. The electrode head is disposed on an end of the lead wire and electrically connected with the core wire structure of the sub-lead wire. The pacemaker includes a pulse generator and the electrode lead electrically connected to the pulse generator.
    Type: Application
    Filed: June 20, 2012
    Publication date: May 2, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., Tsinghua University
    Inventors: LIANG LIU, CHEN FENG, LI QIAN, YU-QUAN WANG, LI FAN, WEN-MEI ZHAO
  • Publication number: 20130103107
    Abstract: A lead wire and a pacemaker using the lead wire are disclosed. The lead wire, comprising: a lead body and a lead electrode at an end of the lead body, the lead electrode being electrically connected with the lead body, the lead electrode comprising a carbon nanotube structure, the carbon nanotube structure comprising at least one carbon nanotube film, the carbon nanotube structure having an electrode tip away from the lead body, and the electrode tip being in linear contact with an organ, wherein the electrode tip functions as a stimulating electrode, the at least one carbon nanotube film acts as a sensing electrode.
    Type: Application
    Filed: December 29, 2011
    Publication date: April 25, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LI FAN, WEN-MEI ZHAO, CHEN FENG, LI QIAN, YU-QUAN WANG, LIANG LIU
  • Publication number: 20130034903
    Abstract: A method for culturing neural cells using a culture medium is provided. Each neural cell includes a neural cell body and at least one neurite branched from the neural cell body. The culture medium includes a substrate and a carbon nanotube structure located on the substrate. A surface of the carbon nanotube structure is polarized to form a polar surface. The neural cells are cultured on the polar surface to grow neurites along the carbon nanotube wires. The carbon nanotube structure includes a number of carbon nanotube wires spaced apart from each other. A distance between adjacent carbon nanotube wires is greater than or equal to a diameter of the neural cell body.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 7, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LI FAN, CHEN FENG, WEN-MEI ZHAO
  • Publication number: 20130034905
    Abstract: A method for making a culture medium for culturing neural cells is provided. Each neural cell includes a neural cell body and at least one neurite branched from the neural cell body. The method includes the following steps. An original carbon nanotube structure is provided. The original carbon nanotube structure includes at least one drawn carbon nanotube film including a number of carbon nanotubes joined end to end by van der Waals force. The carbon nanotubes are substantially oriented along a same direction. A carbon nanotube structure including a number of carbon nanotube wires spaced from each other is formed from the original carbon nanotube structure. A distance between adjacent carbon nanotube wires is larger than or equal to a diameter of the neural cell body, the carbon nanotube wires are capable of guiding extending directions of the neurites. The carbon nanotube structure is fixed on a substrate.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 7, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHEN FENG, LI FAN, WEN-MEI ZHAO
  • Publication number: 20130035767
    Abstract: A neural graft includes a biological substrate, a carbon nanotube structure and a neural network. The carbon nanotube structure is located on the biological substrate. The carbon nanotube structure includes a number of carbon nanotube wires crossed with each other to define a number of pores. The neural network includes a number of neural cell bodies and a number of neurites branched from the neural cell bodies. An effective diameter of each pore is larger than or equal to a diameter of the neural cell body, the neurites substantially extend along the carbon nanotube wires such that the neurites are patterned.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 7, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LI FAN, CHEN FENG, WEN-MEI ZHAO
  • Publication number: 20130034904
    Abstract: A culture medium is used for culturing neural cells. Each neural cell includes a neural cell body and at least one neurite branched from the neural cell body. The culture medium includes a substrate and a carbon nanotube structure located on the substrate. The carbon nanotube structure includes a number of carbon nanotube wires spaced apart from each other. A distance between adjacent carbon nanotube wires is greater than or equal to diameters of the neural cell bodies. The carbon nanotube wires are capable of guiding extending directions of the neurites.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 7, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LI FAN, CHEN FENG, WEN-MEI ZHAO
  • Publication number: 20130006384
    Abstract: A graft includes a carbon nanotube structure and a biological tissue. The carbon nanotube structure has a polar surface. The polar surface is formed by treating the carbon nanotube structure with polarization. The biological tissue is adhered on the polar surface. In addition, a method for manufacturing a graft is also provided.
    Type: Application
    Filed: May 31, 2012
    Publication date: January 3, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHEN FENG, LI FAN, WEN-MEI ZHAO
  • Publication number: 20120270320
    Abstract: A culture medium for growing at least one kind of cells is provided. The culture medium includes a carbon nanotube structure and a cell adhesion layer. The cell adhesion layer covers one surface of the carbon nanotube structure. The at least one kind of cells grows on the cell adhesion layer. In addition, a method for manufacturing a culture medium for growing at least one kind of cells is also provided.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 25, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LI FAN, CHEN FENG, WEN-MEI ZHAO
  • Publication number: 20120196368
    Abstract: A culture medium includes a carbon nanotube structure and a hydrophilic layer. The culture medium is capable of culturing at least one neuron. The hydrophilic layer has a polar surface and is located on a surface of the carbon nanotube structure. The polar surface is located on a surface of the hydrophilic layer away from the carbon nanotube structure, and has a polarity attracted to a polarity of the at least one neuron.
    Type: Application
    Filed: January 13, 2012
    Publication date: August 2, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHEN FENG, LI FAN, WEN-MEI ZHAO
  • Publication number: 20120196367
    Abstract: A method for culturing a number of cells includes the following steps. A culture medium is provided. The culture medium has a carbon nanotube structure and a hydrophilic layer. The hydrophilic layer is formed on a surface of the carbon nanotube structure. A polar layer is formed on a surface of the hydrophilic layer away from the carbon nanotube structure. The cells are seeded and cultured on the polar layer.
    Type: Application
    Filed: January 13, 2012
    Publication date: August 2, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHEN FENG, LI FAN, WEN-MEI ZHAO
  • Publication number: 20120197414
    Abstract: A nerve graft includes a carbon nanotube structure, a hydrophilic layer, and a nerve network. The hydrophilic layer having a polar surface is located on a surface of the carbon nanotube structure. The nerve network positioned on the polar surface of the hydrophilic layer includes a number of neurons connecting with each other. The nerve network has a polarity. The polar surface of the hydrophilic layer has a polarity attracted to the polarity of the nerve network.
    Type: Application
    Filed: January 13, 2012
    Publication date: August 2, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHEN FENG, LI FAN, WEN-MEI ZHAO
  • Publication number: 20120196369
    Abstract: A method for forming a culture medium includes the following steps. A carbon nanotube structure is provided. A hydrophilic layer is formed on a surface of the carbon nanotube structure. The hydrophilic layer is polarized to form a polar surface on the hydrophilic layer. A number of neurons are formed on the polar surface of the hydrophilic layer.
    Type: Application
    Filed: January 13, 2012
    Publication date: August 2, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHEN FENG, LI FAN, WEN-MEI ZHAO
  • Publication number: 20120196366
    Abstract: A method for forming a nerve graft includes the following steps. A carbon nanotube structure is provided. A hydrophilic layer is formed on a surface of the carbon nanotube structure. The hydrophilic layer is polarized to form a polar surface on the hydrophilic layer. A number of neurons are formed on the polar surface of the hydrophilic layer to form a nerve network. The neurons connect with each other.
    Type: Application
    Filed: January 13, 2012
    Publication date: August 2, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHEN FENG, LI FAN, WEN-MEI ZHAO
  • Publication number: 20120150317
    Abstract: A nerve graft includes a carbon nanotube film structure, a protein layer, and a nerve network. The protein layer is located on a surface of the carbon nanotube film structure. The nerve network is positioned on a surface of the protein layer and far away from the carbon nanotube film structure.
    Type: Application
    Filed: December 30, 2010
    Publication date: June 14, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LI FAN, CHEN FENG, WEN-MEI ZHAO
  • Publication number: 20120149113
    Abstract: A method for making a nerve graft includes the following steps. A culture layer including a carbon nanotube film structure and a protein layer is provided. The protein layer is located on a surface of the carbon nanotube film structure. A number of nerve cells are seeded on a surface of the protein layer away from the carbon nanotube film structure. The nerve cells are cultured until a number of neurites branch from the nerve cells and are connected between the nerve cells.
    Type: Application
    Filed: December 30, 2010
    Publication date: June 14, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LI FAN, CHEN FENG, WEN-MEI ZHAO
  • Publication number: 20120149112
    Abstract: A method for making a nerve graft includes the following steps. A culture layer including a lyophobic substrate, a carbon nanotube film structure, and a protein layer is provided. The carbon nanotube film structure is sandwiched between the lyophobic substrate and the protein layer. A number of nerve cells are seeded on a surface of the protein layer away from the lyophobic substrate. The nerve cells are cultured until a number of neurites branch from the nerve cells and are connected between the nerve cells.
    Type: Application
    Filed: December 30, 2010
    Publication date: June 14, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHEN FENG, LI FAN, WEN-MEI ZHAO
  • Publication number: 20120149003
    Abstract: A nerve graft includes a lyophobic substrate, a carbon nanotube film structure, a protein layer, and a nerve network. The carbon nanotube film structure is located on a surface of the lyophobic substrate. The protein layer is located on a surface of the carbon nanotube film structure away from the lyophobic substrate. The nerve network is positioned on a surface of the protein layer away from the lyophobic substrate.
    Type: Application
    Filed: December 30, 2010
    Publication date: June 14, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LI FAN, CHEN FENG, WEN-MEI ZHAO
  • Publication number: 20120118501
    Abstract: A method for forming a hydrophilic composite includes the following steps. A substrate is provided. A carbon nanotube structure having a number of carbon nanotubes is provided. The carbon nanotube structure is disposed on the substrate. A protein solution is provided. The substrate with the carbon nanotube structure is immersed in the protein solution to form a protein layer on the carbon nanotube structure, forming the hydrophilic composite.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 17, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHEN FENG, LI FAN, WEN-MEI ZHAO
  • Publication number: 20120122221
    Abstract: A hydrophilic composite includes a carbon nanotube structure and a protein layer. The carbon nanotube structure has at least one carbon nanotube film. The protein layer covers one surface of the carbon nanotube structure, and is coupled to the at least one carbon nanotube film. The carbon nanotube structure is disposed on a substrate.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 17, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHEN FENG, LI FAN, WEN-MEI ZHAO
  • Publication number: 20120101300
    Abstract: A method for making a hydrophilic carbon nanotube film is provided. A reactor, an oxidative acid solution disposed in the reactor, and at least one primary carbon nanotube film are provided. The primary carbon nanotube film is set in the reactor disposed apart from the oxidative acid solution. The oxidative acid solution is then volatilized to form oxidative acid gas and the reactor is filled with the oxidative acid gas.
    Type: Application
    Filed: December 25, 2010
    Publication date: April 26, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: ZHI-MIN TAO, LI FAN, WEN-MEI ZHAO