Patents by Inventor Wen-Ting Chu

Wen-Ting Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230217842
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell comprising a barrier layer to constrain the movement of metal cations during operation of the RRAM cell. In some embodiments, the RRAM cell further comprises a bottom electrode, a top electrode, a switching layer, and an active metal layer. The switching layer, the barrier layer, and the active metal layer are stacked between the bottom and top electrodes, and the barrier layer is between the switching and active metal layers. The barrier layer is conductive and between has a lattice constant less than that of the active metal layer.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Inventors: Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu, Chu-Jie Huang
  • Patent number: 11696521
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell comprising a high electron affinity dielectric layer at a bottom electrode. The high electron affinity dielectric layer is one of multiple different dielectric layers vertically stacked between the bottom electrode and a top electrode overlying the bottom electrode. Further, the high electrode electron affinity dielectric layer has a highest electron affinity amongst the multiple different dielectric layers and is closest to the bottom electrode. The different dielectric layers are different in terms of material systems and/or material compositions. It has been appreciated that by arranging the high electron affinity dielectric layer closest to the bottom electrode, the likelihood of the memory cell becoming stuck during cycling is reduced at least when the memory cell is RRAM. Hence, the likelihood of a hard reset/failure bit is reduced.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: July 4, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Yang Chen, Chun-Yang Tsai, Kuo-Ching Huang, Wen-Ting Chu, Cheng-Jun Wu
  • Patent number: 11682456
    Abstract: Methods for programming memory cells of a resistive memory device include applying a voltage pulse sequence to a memory cell to set a logic state of the memory cell. An initial set sequence of voltage pulses may be applied to the memory cell, followed by a reform voltage pulse having an amplitude greater than the amplitudes of the initial set sequence, and within ±5% of the amplitude of a voltage pulse used in an initial forming process. Additional voltage pulses having amplitudes that are less than the amplitude of the reform voltage pulse may be subsequently applied. By applying a reform voltage pulse in the middle of, or at the end of, a memory set sequence including multiple voltage pulses, a resistive memory device may have a larger memory window and improved data retention relative to resistive memory devices programmed using conventional programming methods.
    Type: Grant
    Filed: August 28, 2021
    Date of Patent: June 20, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Fu-Chen Chang, Chu-Jie Huang, Nai-Chao Su, Kuo-Chi Tu, Wen-Ting Chu
  • Patent number: 11683999
    Abstract: The present disclosure relates to a memory device. The memory device includes an access device arranged on or within a substrate and coupled to a word-line and a source line. A plurality of lower interconnects are disposed within a lower dielectric structure over the substrate. A first electrode is coupled to the plurality of lower interconnects. The plurality of lower interconnects couple the access device to the first electrode. A second electrode is over the first electrode. One or more upper interconnects are disposed within an upper dielectric structure laterally surrounding the second electrode. The one or more upper interconnects couple the second electrode to a bit-line. A data storage structure is disposed between the first electrode and the second electrode. The data storage structure includes one or more metals having non-zero concentrations that change as a distance from the substrate varies.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: June 20, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Cheng-Yuan Tsai, Hsing-Lien Lin, Wen-Ting Chu
  • Patent number: 11678494
    Abstract: Various embodiments of the present application are directed a memory layout for reduced line loading. In some embodiments, a memory device comprises an array of bit cells, a first conductive line, a second conductive line, and a plurality of conductive bridges. The first and second conductive lines may, for example, be source lines or some other conductive lines. The array of bit cells comprises a plurality of rows and a plurality of columns, and the plurality of columns comprise a first column and a second column. The first conductive line extends along the first column and is electrically coupled to bit cells in the first column. The second conductive line extends along the second column and is electrically coupled to bit cells in the second column. The conductive bridges extend from the first conductive line to the second conductive line and electrically couple the first and second conductive lines together.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: June 13, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yang Chang, Wen-Ting Chu
  • Patent number: 11678592
    Abstract: The present disclosure is directed to a method for the formation of resistive random-access memory (RRAM) structures with a low profile between or within metallization layers. For example, the method includes forming, on a substrate, a first metallization layer with conductive structures and a first dielectric layer abutting sidewall surfaces of the conductive structures; etching a portion of the first dielectric layer to expose a portion of the sidewall surfaces of the conductive structures; depositing a memory stack on the first metallization layer, the exposed portion of the sidewall surfaces, and a top surface of the conductive structures; patterning the memory stack to form a memory structure that covers the exposed portion of the sidewall surfaces and the top surface of the conductive structures; depositing a second dielectric layer to encapsulate the memory stack; and forming a second metallization layer on the second dielectric layer.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: June 13, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Ming Wang, Chia-Wei Liu, Jen-Sheng Yang, Wen-Ting Chu, Yu-Wen Liao, Huei-Tzu Wang
  • Patent number: 11637239
    Abstract: The present disclosure, in some embodiments, relates to a resistive random access memory (RRAM) cell. The RRAM cell has a bottom electrode over a substrate. A data storage layer is over the bottom electrode and has a first thickness. A capping layer is over the data storage layer. The capping layer has a second thickness that is in a range of between approximately 1.9 and approximately 3 times thicker than the first thickness. A top electrode is over the capping layer.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: April 25, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Trinh Hai Dang, Hsing-Lien Lin, Cheng-Yuan Tsai, Chin-Chieh Yang, Yu-Wen Liao, Wen-Ting Chu, Chia-Shiung Tsai
  • Patent number: 11631810
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes one or more lower interconnects arranged within a dielectric structure over a substrate. A bottom electrode is disposed over one of the one or more lower interconnects. The bottom electrode includes a first material having a first electronegativity. A data storage layer separates the bottom electrode from a top electrode. The bottom electrode is between the data storage layer and the substrate. A reactivity reducing layer includes a second material and has a second electronegativity that is greater than or equal to the first electronegativity. The second material contacts a lower surface of the bottom electrode that faces the substrate.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: April 18, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Yang Chen, Chun-Yang Tsai, Kuo-Ching Huang, Wen-Ting Chu, Pili Huang, Cheng-Jun Wu
  • Publication number: 20230113903
    Abstract: A memory architecture includes: a plurality of cell arrays each of which comprises a plurality of bit cells, wherein each of bit cells of the plurality of cell arrays uses a respective variable resistance dielectric layer to transition between first and second logic states; and a control logic circuit, coupled to the plurality of cell arrays, and configured to cause a first information bit to be written into respective bit cells of a pair of cell arrays as an original logic state of the first information bit and a logically complementary logic state of the first information bit, wherein the respective variable resistance dielectric layers are formed by using a same recipe of deposition equipment and have different diameters.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Inventors: Yu-Der CHIH, Chung-Cheng Chou, Wen-Ting Chu
  • Patent number: 11611038
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell comprising a barrier layer to constrain the movement of metal cations during operation of the RRAM cell. In some embodiments, the RRAM cell further comprises a bottom electrode, a top electrode, a switching layer, and an active metal layer. The switching layer, the barrier layer, and the active metal layer are stacked between the bottom and top electrodes, and the barrier layer is between the switching and active metal layers. The barrier layer is conductive and between has a lattice constant less than that of the active metal layer.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: March 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu, Chu-Jie Huang
  • Publication number: 20230062850
    Abstract: Methods for programming memory cells of a resistive memory device include applying a voltage pulse sequence to a memory cell to set a logic state of the memory cell. An initial set sequence of voltage pulses may be applied to the memory cell, followed by a reform voltage pulse having an amplitude greater than the amplitudes of the initial set sequence, and within ±5% of the amplitude of a voltage pulse used in an initial forming process. Additional voltage pulses having amplitudes that are less than the amplitude of the reform voltage pulse may be subsequently applied. By applying a reform voltage pulse in the middle of, or at the end of, a memory set sequence including multiple voltage pulses, a resistive memory device may have a larger memory window and improved data retention relative to resistive memory devices programmed using conventional programming methods.
    Type: Application
    Filed: August 28, 2021
    Publication date: March 2, 2023
    Inventors: Fu-Chen CHANG, Chu-Jie HUANG, Nai-Chao SU, Kuo-Chi TU, Wen-Ting CHU
  • Patent number: 11557344
    Abstract: A memory architecture includes: a plurality of cell arrays each of which comprises a plurality of bit cells, wherein each of bit cells of the plurality of cell arrays uses a respective variable resistance dielectric layer to transition between first and second logic states; and a control logic circuit, coupled to the plurality of cell arrays, and configured to cause a first information bit to be written into respective bit cells of a pair of cell arrays as an original logic state of the first information bit and a logically complementary logic state of the first information bit, wherein the respective variable resistance dielectric layers are formed by using a same recipe of deposition equipment and have different diameters.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: January 17, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Der Chih, Chung-Cheng Chou, Wen-Ting Chu
  • Publication number: 20230011895
    Abstract: A method for efficiently waking up ferroelectric memory is provided. A wafer is formed with a plurality of first signal lines, a plurality of second signal lines, a plurality of third signal lines, and a plurality of ferroelectric memory cells that constitute a ferroelectric memory array. Each of the ferroelectric memory cells is electrically connected to one of the first signal lines, one of the second signal lines and one of the third signal lines. Voltage signals are simultaneously applied to the first signal lines, the second signal lines and the third signal lines to induce occurrence of a wake-up effect in the ferroelectric memory cells.
    Type: Application
    Filed: July 8, 2021
    Publication date: January 12, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU, Wen-Ting CHU
  • Publication number: 20220384464
    Abstract: A semiconductor device includes a bottom electrode, a top electrode, a sidewall spacer, and a data storage element. The sidewall spacer is disposed aside the top electrode. The data storage element is located between the bottom electrode and the top electrode, and includes a ferroelectric material. The data storage element has a peripheral region which is disposed beneath the sidewall spacer and which has at least 60% of ferroelectric phase. A method for manufacturing the semiconductor device and a method for transforming a non-ferroelectric phase of a ferroelectric material to a ferroelectric phase are also disclosed.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU, Wen-Ting CHU
  • Publication number: 20220384724
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell comprising a high electron affinity dielectric layer at a bottom electrode. The high electron affinity dielectric layer is one of multiple different dielectric layers vertically stacked between the bottom electrode and a top electrode overlying the bottom electrode. Further, the high electrode electron affinity dielectric layer has a highest electron affinity amongst the multiple different dielectric layers and is closest to the bottom electrode. The different dielectric layers are different in terms of material systems and/or material compositions. It has been appreciated that by arranging the high electron affinity dielectric layer closest to the bottom electrode, the likelihood of the memory cell becoming stuck during cycling is reduced at least when the memory cell is RRAM. Hence, the likelihood of a hard reset/failure bit is reduced.
    Type: Application
    Filed: August 4, 2022
    Publication date: December 1, 2022
    Inventors: Chao-Yang Chen, Chun-Yang Tsai, Kuo-Ching Huang, Wen-Ting Chu, Cheng-Jun Wu
  • Publication number: 20220351769
    Abstract: The present disclosure relates to an integrated chip structure. The integrated chip structure includes a first source/drain region and a second source/drain region disposed within a substrate. A select gate is disposed over the substrate between the first source/drain region and the second source/drain region. A ferroelectric random-access memory (FeRAM) device is disposed over the substrate between the select gate and the first source/drain region. A first sidewall spacer, including one or more dielectric materials, is arranged laterally between the select gate and the FeRAM device. An inter-level dielectric (ILD) structure laterally surrounds the FeRAM device and the select gate and vertically overlies a top surface of the first sidewall spacer.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
  • Publication number: 20220302381
    Abstract: The present disclosure relates to a memory device. The memory device includes an access device arranged on or within a substrate and coupled to a word-line and a source line. A plurality of lower interconnects are disposed within a lower dielectric structure over the substrate. A first electrode is coupled to the plurality of lower interconnects. The plurality of lower interconnects couple the access device to the first electrode. A second electrode is over the first electrode. One or more upper interconnects are disposed within an upper dielectric structure laterally surrounding the second electrode. The one or more upper interconnects couple the second electrode to a bit-line. A data storage structure is disposed between the first electrode and the second electrode. The data storage structure includes one or more metals having non-zero concentrations that change as a distance from the substrate varies.
    Type: Application
    Filed: June 7, 2022
    Publication date: September 22, 2022
    Inventors: Hai-Dang Trinh, Cheng-Yuan Tsai, Hsing-Lien Lin, Wen-Ting Chu
  • Publication number: 20220293681
    Abstract: Various embodiments of the present application are directed towards an integrated chip comprising memory cells separated by a void-free dielectric structure. In some embodiments, a pair of memory cell structures is formed on a via dielectric layer, where the memory cell structures are separated by an inter-cell area. An inter-cell filler layer is formed covering the memory cell structures and the via dielectric layer, and further filling the inter-cell area. The inter-cell filler layer is recessed until a top surface of the inter-cell filler layer is below a top surface of the pair of memory cell structures and the inter-cell area is partially cleared. An interconnect dielectric layer is formed covering the memory cell structures and the inter-cell filler layer, and further filling a cleared portion of the inter-cell area.
    Type: Application
    Filed: June 1, 2022
    Publication date: September 15, 2022
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20220285376
    Abstract: A method for fabricating a semiconductor device is provided. The method includes depositing a bottom electrode layer over a substrate; depositing a ferroelectric layer over the bottom electrode layer; depositing a first top electrode layer over the ferroelectric layer, wherein the first top electrode layer comprises a first metal; depositing a second top electrode layer over the first top electrode layer, wherein the second top electrode layer comprises a second metal, and a standard reduction potential of the first metal is greater than a standard reduction potential of the second metal; and removing portions of the second top electrode layer, the first top electrode layer, the ferroelectric layer, and the bottom electrode layer to form a memory stack, the memory stack comprising remaining portions of the second top electrode layer, the first top electrode layer, the ferroelectric layer, and the bottom electrode layer.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU, Wen-Ting CHU, Alexander KALNITSKY
  • Patent number: 11437084
    Abstract: The present disclosure relates to a method of forming a memory structure. The method includes depositing a ferroelectric random access memory (FeRAM) stack over a substrate. The FeRAM stack has a ferroelectric layer and one or more conductive layers over the ferroelectric layer. The FeRAM stack is patterned to define an FeRAM device stack. A sidewall spacer is formed along a first side of the FeRAM device stack, and a select gate is formed along a side of the sidewall spacer that faces away from the FeRAM device stack. A source region is formed within the substrate and along a second side of the FeRAM device stack, and a drain region is formed within the substrate. The drain region is separated from the FeRAM device stack by the select gate.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: September 6, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair