Patents by Inventor Wen Tong

Wen Tong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180184415
    Abstract: Systems and methods of performing handover for a user equipment between hyper cells are provided. Handover is done on a per service basis. In some cases, a handover of one service from a source cell to target cell is performed while continuing to use the source cell, the target cell, or another cell for another service. In some cases the handover for a user equipment is from a source cell to a target cell in respect of one of uplink and downlink communications, and the user equipment continues to use the source cell for the other of uplink and downlink communications.
    Type: Application
    Filed: February 26, 2018
    Publication date: June 28, 2018
    Inventors: Lu Rong, Jianglei Ma, Peiying Zhu, Wen Tong, Kelvin Kar Kin Au
  • Patent number: 10009209
    Abstract: A method for operating a device includes determining adaptation criteria for a waveform to be transmitted by a transmitting device over a communications channel towards a receiving device, and adjusting a generalized multi-carrier multiplexing parameter (GMMP) of the waveform in accordance with the adaptation criteria. The method also includes transmitting an indicator of the adjusted GMMP to at least one of the transmitting device and the receiving device.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: June 26, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Peiying Zhu, Jianglei Ma, Ming Jia, Wen Tong
  • Publication number: 20180176900
    Abstract: A method and system of allocating resources in a Radio Access Network that includes associating each of a plurality of services with a slice that is allocated a unique set of network resources and transmitting information in the Radio Access Network for at least one of the services using the slice associated with the at least one service.
    Type: Application
    Filed: February 15, 2018
    Publication date: June 21, 2018
    Inventors: Lu Rong, Jianglei Ma, Peiying Zhu, Wen Tong, Kelvin Kar Kin Au
  • Publication number: 20180167952
    Abstract: A method and system are provided for scheduling data transmission in a Multiple-Input Multiple-Output (MIMO) system. The MIMO system may comprise at least one MIMO transmitter and at least one MIMO receiver. Feedback from one or more receivers may be used by a transmitter to improve quality, capacity, and scheduling in MIMO communication systems. The method may include generating or receiving information pertaining to a MIMO channel metric and information pertaining to a Channel Quality Indicator (CQI) in respect of a transmitted signal; and sending a next transmission to a receiver using a MIMO mode selected in accordance with the information pertaining to the MIMO channel metric, and an adaptive coding and modulation selected in accordance with the information pertaining to the CQI.
    Type: Application
    Filed: January 26, 2018
    Publication date: June 14, 2018
    Inventors: Wen Tong, Ming Jia, Jianming Wu, Dong-Sheng Yu, Peiying Zhu
  • Publication number: 20180167247
    Abstract: A method and apparatus for improving channel estimation within an OFDM communication system. Channel estimation in OFDM is usually performed with the aid of pilot symbols. The pilot symbols are typically spaced in time and frequency. The set of frequencies and times at which pilot symbols are inserted is referred to as a pilot pattern. In some cases, the pilot pattern is a diagonal-shaped lattice, either regular or irregular. The method first interpolates in the direction of larger coherence (time or frequency). Using these measurements, the density of pilot symbols in the direction of faster change will be increased thereby improving channel estimation without increasing overhead. As such, the results of the first interpolating step can then be used to assist the interpolation in the dimension of smaller coherence (time or frequency).
    Type: Application
    Filed: February 8, 2018
    Publication date: June 14, 2018
    Inventors: Jianglei Ma, Ming Jia, Wen Tong, Peiying Zhu, Hang Zhang, Hua Xu, Dongsheng Yu
  • Patent number: 9992792
    Abstract: A system and method for scheduling cooperative uplink transmissions in a virtual multiple input multiple output (MIMO) wireless communication environment are provided. More specifically, both random and channel aware orthogonal scheduling techniques for identifying a sub-set of N mobile terminals to provide cooperative uplink transmissions for each transmit time interval are provided.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: June 5, 2018
    Assignee: BlackBerry Limited
    Inventors: Jianming Wu, Ming Jia, Wen Tong, Peiying Zhu
  • Publication number: 20180152331
    Abstract: The present invention provides a preamble that is inserted into an OFDMA frame and has a common sequence for all the base stations participating in a transmission. The subscriber station performs fine synchronization using the common sequence on the common preamble, and the resulting peaks will provide the locations of candidate base stations. The base station specific search is then performed in the vicinities of those peaks by using base station specific pseudo-noise sequences. With this two stage cell search, the searching window is drastically reduced. The preamble is matched to known values by a respective receiver to decode the signals and permit multiple signals to be transferred from the transmitter to the receiver. The preamble may comprise two parts, Preamble-I and Preamble-2, which may be used in different systems, including multioutput, multi-input (MIMO) systems.
    Type: Application
    Filed: November 27, 2017
    Publication date: May 31, 2018
    Inventors: Jianglei Ma, Hang Zhang, Wen Tong, Ming Jia, Peiying Zhu, Mo-Han Fong
  • Patent number: 9985716
    Abstract: In a wireless multi-hop relay network arranged in a tree topology, the base station and one or more relay stations are associated as a virtual base station (VBS). The base station and each relay station have a unique virtual base station identifier (VBS-ID) associated with the path defined by the base station and the one or more relay stations. A relay station in the branch uses its VBS-ID for communicating with an attached subscriber station (e.g. a mobile station) such that communications between the base station and subscriber station occur via the VBS. Subscriber station data communications are relayed between the base station and the one or more relay stations over the VBS via a tunnel connection. The VBS is auto configurable. Mobility for subscriber stations and 10 relay stations is provided through reconfiguration of VBS's.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: May 29, 2018
    Assignee: Apple Inc.
    Inventors: Guo Qiang Wang, Wen Tong, Shiquan Wu
  • Publication number: 20180145731
    Abstract: A codebook C is provided in a MIMO transmitter as well as a MIMO receiver. The codebook C will include M codewords ci, where i is a unique codeword index for each codeword ci. Each codeword defines weighting factors to apply to the MIMO signals, and may correspond to channel matrices or vectors to apply to the MIMO signals prior to transmission from the respective antennas of the MIMO transmitter. The present invention creates codeword subsets Si for each codeword ci of the codebook C. Each codeword subset Si defines L codewords cj, which are selected from all the codewords ci in the codebook C. The codewords cj in a codeword subset Si are the L codewords in the entire codebook that best correlate with the corresponding codeword ci.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 24, 2018
    Inventors: Wen Tong, Hosein Nikopour, Amir Khandani, Hua Xu, Ming Jia, Peiying Zhu, Dong-sheng Yu
  • Publication number: 20180138994
    Abstract: A new method of performing interference estimation to allow the data packets to be efficiently delivered in an OFDM system. The interference estimation is performed on average over each frame for each mobile station individually in both frequency and time domains. Based on the estimated interference, the CIR can be determined by the BTS based on channel response estimates made by the BTS, or by the MS based on channel response estimates made for the uplink assuming a symmetrical channel. Numerical results show that the CIR estimation error could be very small if a sub-channel is considered as the minimum transmission unit. In terms of the aggregate throughput, the interference estimation method can provide a significant gain.
    Type: Application
    Filed: January 12, 2018
    Publication date: May 17, 2018
    Inventors: Jianming WU, Wen TONG, Peiying ZHU
  • Patent number: 9973365
    Abstract: Methods and systems are provided that enable an OFDM transmitter to be used for transmitting conventional OFDM or a form of transformed OFDM. A technique is provided for transforming a coded and modulated sequence of samples prior to an IFFT that enables the transformed sequence of samples to be transmitted using conventional OFDM or transformed OFDM. The selection of a transform function for transforming the coded and modulated sequence of samples may be based on optimizing the transform function for particular operating conditions between the transmitter and receiver. In some embodiments of the invention OFDM and time transformed OFDM are multiplexed in time and/or frequency in a transmission frame. In some embodiments of the invention a pilot pattern is provided in which the pilot are sent using OFDM and data is sent using OFDM and/or transformed OFDM.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: May 15, 2018
    Assignee: Apple Inc.
    Inventors: Jianglei Ma, Wen Tong, Ming Jia, Hua Xu, Peiying Zhu, Hang Zhang
  • Publication number: 20180115393
    Abstract: Aspects of this disclosure provide a technique for implementing polar encoding with incremental redundancy HARQ re-transmission. In particular, a transmitter may encode a message using different polar codes to obtain a first codeword and a second codeword that is twice the length of the first codeword, and transmit the first codeword as an original transmission, and the second half of the second codeword as a re-transmission without transmitting the first half of the second codeword. Information bits that are common to both the first codeword and the second half of the second codeword may be mapped to more-reliable bit-locations in the second half of the second codeword. Decoded bit values for the common information in the original transmission and retransmission may be compared by the receiver to perform a parity check.
    Type: Application
    Filed: October 16, 2017
    Publication date: April 26, 2018
    Inventors: Gongzheng Zhang, Huazi Zhang, Rong Li, Jun Wang, Yiqun Ge, Wen Tong
  • Patent number: 9954715
    Abstract: The present invention provides a preamble that is inserted into an OFDMA frame and has a common sequence for all the base stations participating in a transmission. The subscriber station performs fine synchronization using the common sequence on the common preamble, and the resulting peaks will provide the locations of candidate base stations. The base station specific search is then performed in the vicinities of those peaks by using base station specific pseudo-noise sequences. With this two stage cell search, the searching window is drastically reduced. The preamble is matched to known values by a respective receiver to decode the signals and permit multiple signals to be transferred from the transmitter to the receiver. The preamble may comprise two parts, Preamble-I and Preamble-2, which may be used in different systems, including multioutput, multi-input (MIMO) systems.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: April 24, 2018
    Assignee: APPLE INC.
    Inventors: Jianglei Ma, Hang Zhang, Wen Tong, Ming Jia, Peiying Zhu, Mo-Han Fong
  • Publication number: 20180097580
    Abstract: Embodiments of this disclosure enhance the error detection performance of parallel polar encoding by cross-concatenating parity bits between segments of information bits transmitted over different sets of sub-channels. In one embodiment, a first segment of information bits is transmitted over a first set of sub-channels, and at least a second segment of information bits, and a masked parity bit, are transmitted over a second set of sub-channels. A value of the masked parity bit is equal to a bitwise combination of a first parity bit computed from the first segment of information bits and a second parity bit computed from the second segment of information bits. The bitwise combination may be a bitwise AND, a bitwise OR, or a bitwise XOR of the respective parity bits.
    Type: Application
    Filed: September 27, 2017
    Publication date: April 5, 2018
    Inventors: Huazi Zhang, Gongzheng Zhang, Rong Li, Jun Wang, Wen Tong, Yiqun Ge
  • Publication number: 20180092098
    Abstract: A channel descriptor management message is transmitted on a broadcast connection to a mobile terminal. The channel descriptor management message provides a format for a frame. The frame includes a resource space. The channel descriptor management message defines a plurality of channels within the resource space and allocates at least one of the channels to a plurality of users. Subsequent resource allocation messages may refer to a location within a channel rather than a location within the entire resource space.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 29, 2018
    Inventors: Hang ZHANG, Mo-Han Fong, Peiying Zhu, Wen Tong, Jianglei Ma
  • Patent number: 9929889
    Abstract: A method and apparatus for improving channel estimation within an OFDM communication system. Channel estimation in OFDM is usually performed with the aid of pilot symbols. The pilot symbols are typically spaced in time and frequency. The set of frequencies and times at which pilot symbols are inserted is referred to as a pilot pattern. In some cases, the pilot pattern is a diagonal-shaped lattice, either regular or irregular. The method first interpolates in the direction of larger coherence (time or frequency). Using these measurements, the density of pilot symbols in the direction of faster change will be increased thereby improving channel estimation without increasing overhead. As such, the results of the first interpolating step can then be used to assist the interpolation in the dimension of smaller coherence (time or frequency).
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: March 27, 2018
    Assignee: Apple Inc.
    Inventors: Jianglei Ma, Ming Jia, Wen Tong, Peiying Zhu, Hang Zhang, Hua Xu, Dongsheng Yu
  • Patent number: 9928074
    Abstract: Embodiments are provided for an asynchronous processor with token-based very long instruction word architecture. The asynchronous processor comprises a memory configured to cache a plurality of instructions, a feedback engine configured to receive the instructions in bundles of instructions at a time (referred to as very long instruction word) and to decode the instructions, and a crossbar bus configured to transfer calculation information and results of the asynchronous processor. The apparatus further comprises a plurality of sets of execution units (XUs) between the feedback engine and the crossbar bus. Each set of the sets of XUs comprises a plurality of XUs arranged in series and configured to process a bundle of instructions received at the each set from the feedback engine.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: March 27, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yiqun Ge, Wuxian Shi, Qifan Zhang, Tao Huang, Wen Tong
  • Patent number: 9923617
    Abstract: Systems and methods of optimizing communication channels in multi-user communication systems are provided. Coding weights are determined based on communication channel state information for communication channels between a transmitter and multiple receivers. The coding weights are applied to communication signals to be transmitted from the transmitter to the receivers. Each receiver decodes received signals using inverses of the coding weights. Embodiments of the invention support multi-user MIMO (Multiple Input Multiple Output) where each receiver has fewer antennas than the transmitter, and enhance system performance if the total number of antennas at all of the receivers exceeds the number of antennas at the transmitter.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: March 20, 2018
    Assignee: Apple Inc.
    Inventors: Wen Tong, Ming Jia, Peiying Zhu, Alexandre M. Chloma, Mikhail G. Bakouline, Vitali B. Kreindeline
  • Patent number: 9923874
    Abstract: A packet obfuscation method comprising receiving a data packet having a routing header portion and a payload portion, performing a first obfuscation on the routing header portion to generate an obfuscated routing header portion, performing a second obfuscation on at least the payload portion to generate an obfuscated payload portion, and combining the obfuscated routing header portion and the obfuscated payload portion to form an obfuscated packet. A packet forwarding method comprising obfuscating routing information using a packet obfuscation function, generating a plurality of forwarding rule entries in accordance with the obfuscated routing information, transmitting the plurality of forwarding rule entries to at least one network node in a network, transmitting the packet obfuscation function to at least one network node in the network, and transmitting a de-obfuscation function to at least one network node in the network.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: March 20, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Tao Wan, Peter Ashwood-Smith, Wen Tong
  • Publication number: 20180076922
    Abstract: Embodiment techniques map parity bits to sub-channels based on their row weights. The row weight for a sub-channel may be viewed as the number of “ones” in the corresponding row of the Kronecker matrix or as a power of 2 with the exponent (i.e. the hamming weight) being the number of “ones” in the binary representation of the sub-channel index (further described below). In one embodiment, candidate sub-channels that have certain row weight values are reserved for parity bit(s). Thereafter, K information bits may be mapped to the K most reliable remaining sub-channels, and a number of frozen bits (e.g. N?K) may be mapped to the least reliable remaining sub-channels. Parity bits may then mapped to the candidate sub-channels, and parity bit values are determined based on a function of the information bits.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Huazi Zhang, Jiajie Tong, Rong Li, Jun Wang, Wen Tong, Yiqun Ge, Xiaocheng Liu, Gongzheng Zhang, Jian Wang, Nan Cheng, Qifan Zhang