Patents by Inventor WEN-YUN WU
WEN-YUN WU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11549890Abstract: A device for imaging one dimension nanomaterials is provided. The device includes an optical microscope with a liquid immersion objective, a laser device, and a spectrometer. The laser device is configured to provide an incident light beam with a continuous spectrum. The spectrometer is configured to obtain spectral information of the one dimensional nanomaterials.Type: GrantFiled: September 27, 2018Date of Patent: January 10, 2023Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Wen-Yun Wu, Jing-Ying Yue, Xiao-Yang Lin, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10883917Abstract: A method for imaging 1-D nanomaterials is provided. The method includes: providing a 1-D nanomaterials sample; immersing the 1-D nanomaterials sample in a liquid; illuminating the 1-D nanomaterials sample by a first incident light and a second incident light to cause resonance Rayleigh scattering, wherein the first incident light and the second incident light are not parallel to each other; and acquiring a resonance Rayleigh scattering image of the 1-D nanomaterials sample with a microscope.Type: GrantFiled: August 29, 2018Date of Patent: January 5, 2021Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Wen-Yun Wu, Dong-Qi Li, Jin Zhang, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10712276Abstract: A imaging device 1-D nanomaterials is provided. The device includes: a first light source, a second light source, a microscope with a liquid immersion object, and a carrier. The first light source is configured to provide a first incident light and the second light source is configured to provide a second incident light, the first incident light and the incident light are not parallel to each other. The carrier is configured to contain a 1-D nanomaterials sample and a liquid, both the 1-D nanomaterials sample and the liquid immersion object are immersed in the liquid.Type: GrantFiled: August 29, 2018Date of Patent: July 14, 2020Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Wen-Yun Wu, Dong-Qi Li, Jin Zhang, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10386982Abstract: An electrostatic sensing device comprises an electrostatic sensing module and a control unit electrically connected to the electrostatic sensing module. The electrostatic sensing module comprises a first electrostatic sensing element comprising opposite ends, and two first electrodes. The two first electrodes are separately located on and electrically connected to the two opposite ends of the first electrostatic sensing element. The first electrostatic sensing element is a single walled carbon nanotube or a few-walled carbon nanotube. The control unit electrically is configured to apply a direct voltage to the first electrostatic sensing element and measure a current/resistance of the first electrostatic sensing element.Type: GrantFiled: December 30, 2015Date of Patent: August 20, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10386983Abstract: An electrostatic sensing device comprises an electrostatic sensing module and a control unit electrically connected to the electrostatic sensing module. The electrostatic sensing module comprises a first electrostatic sensing element comprising opposite ends, and two first electrodes. The two first electrodes are separately located on and electrically connected to the two opposite ends of the first electrostatic sensing element. The first electrostatic sensing element is a single walled carbon nanotube or a few-walled carbon nanotube. The control unit electrically is configured to apply a direct voltage to the first electrostatic sensing element and measure a current/resistance of the first electrostatic sensing element.Type: GrantFiled: December 30, 2015Date of Patent: August 20, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10310660Abstract: A hover controlling device includes a sensing unit and a hover control unit. The sensing unit includes a plurality of first electrostatic sensing elements, a plurality of first electrodes, a plurality of second electrostatic sensing elements, and a plurality of third electrodes located on a substrate. Each first electrostatic sensing element and each second electrostatic sensing element include a single walled carbon nanotube or a few-walled carbon nanotube. The resistances of the plurality of first electrostatic sensing elements and the plurality of second electrostatic sensing elements are changed in process of a sensed object with electrostatic near, but does not touch the plurality of first electrostatic sensing elements and the plurality of second electrostatic sensing elements. The hover control unit is electrically connected to the plurality of first electrostatic sensing elements and the plurality of second electrostatic sensing elements.Type: GrantFiled: December 27, 2015Date of Patent: June 4, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10310661Abstract: A hover controlling device includes a sensing unit and a hover control unit. The sensing unit includes a plurality of first electrostatic sensing elements, a plurality of first electrodes, a plurality of second electrostatic sensing elements, and a plurality of third electrodes located on a substrate. Each first electrostatic sensing element and each second electrostatic sensing element include a single walled carbon nanotube or a few-walled carbon nanotube. The resistances of the plurality of first electrostatic sensing elements and the plurality of second electrostatic sensing elements are changed in process of a sensed object with electrostatic near, but does not touch the plurality of first electrostatic sensing elements and the plurality of second electrostatic sensing elements. The hover control unit is electrically connected to the plurality of first electrostatic sensing elements and the plurality of second electrostatic sensing elements.Type: GrantFiled: December 27, 2015Date of Patent: June 4, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10296129Abstract: A touch and hover sensing device includes a hover sensing module is located on a first surface of a substrate, the hover sensing module includes a plurality of first electrostatic sensing elements and a plurality of second electrostatic sensing elements electrically insulated from each other. Each of the plurality of first electrostatic sensing elements and each of the plurality of second electrostatic sensing elements include a single walled carbon nanotube or few-walled carbon nanotube. A touch sensing module is located on a second surface of the substrate. The hover sensing module and the touch sensing module are connected to a control chip, the control chip controls the hover sensing module and the touch sensing module simultaneously working or working separately, to sense a position coordinate of the sensed object.Type: GrantFiled: December 27, 2015Date of Patent: May 21, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10267682Abstract: A method for imaging one dimension nanomaterials is provided. Firstly, one dimension nanomaterials sample, an optical microscope with a liquid immersion objective and a liquid are provided. Secondly, the one dimensional nanomaterials sample is immersed in the liquid. Thirdly, the one dimensional nanomaterials sample is illuminated by an incident beam to generate resonance Rayleigh scattering. Fourthly, the liquid immersion objective is immersed into the liquid to get a resonance Rayleigh scattering (RRS) image of the one dimensional nanomaterials sample. Fifthly, spectra of the one dimensional nanomaterials sample are measured to obtain chirality of the one dimensional nanomaterials sample.Type: GrantFiled: August 28, 2015Date of Patent: April 23, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Wen-Yun Wu, Jing-Ying Yue, Xiao-Yang Lin, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10267738Abstract: A method for assigning chirality of carbon nanotube is provided. Firstly, carbon nanotube sample, an optical microscope with a liquid immersion objective and a liquid are provided. Secondly, the carbon nanotube sample is immersed in the liquid. Thirdly, the carbon nanotube sample is illuminated by an incident beam to generate resonance Rayleigh scattering. Fourthly, the liquid immersion objective is immersed into the liquid to get a resonance Rayleigh scattering (RRS) image of the carbon nanotube sample. Fifthly, spectra of the carbon nanotube sample are measured to obtain chirality of the carbon nanotube sample.Type: GrantFiled: August 28, 2015Date of Patent: April 23, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Wen-Yun Wu, Jing-Ying Yue, Xiao-Yang Lin, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10261637Abstract: An electrostatic sensing device comprises an electrostatic sensing module and a control unit electrically connected to the electrostatic sensing module. The electrostatic sensing module comprises a first electrostatic sensing element comprising opposite ends, and two first electrodes. The two first electrodes are separately located on and electrically connected to the two opposite ends of the first electrostatic sensing element. The first electrostatic sensing element is one-dimensional semiconducting linear structure with a diameter less than 100 nanometers. The control unit electrically is configured to apply a direct voltage to the first electrostatic sensing element and measure a current/resistance of the first electrostatic sensing element.Type: GrantFiled: December 29, 2015Date of Patent: April 16, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10261636Abstract: A touch and hover sensing device includes a sensing module, a hover sensing unit, a touch sensing unit, and a switching control unit switching between a hover mode and a touch mode. The sensing module includes a plurality of first electrostatic sensing elements and a plurality of second electrostatic sensing elements electrically insulated from each other and located on a surface of an insulating substrate. The plurality of first electrostatic sensing elements is spaced from each other and extends along a first direction, and the plurality of second electrostatic sensing elements is spaced from each other and extends along a second direction. Each first electrostatic sensing element and each second electrostatic sensing element includes a single walled carbon nanotube or few-walled carbon nanotube.Type: GrantFiled: December 27, 2015Date of Patent: April 16, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10248267Abstract: An electrostatic sensing device comprises an electrostatic sensing module and a control unit electrically connected to the electrostatic sensing module. The electrostatic sensing module comprises a first electrostatic sensing element comprising opposite ends, and two first electrodes. The two first electrodes are separately located on and electrically connected to the two opposite ends of the first electrostatic sensing element. The first electrostatic sensing element is a single walled carbon nanotube or a few-walled carbon nanotube. The control unit electrically is configured to apply a direct voltage to the first electrostatic sensing element and measure a current/resistance of the first electrostatic sensing element.Type: GrantFiled: December 29, 2015Date of Patent: April 2, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10228803Abstract: An electrostatic sensing method is provided. An electrostatic sensing device comprising an electrostatic sensing module comprising a first electrostatic sensing element, and a control unit electrically connected to the electrostatic sensing module is provided. The first electrostatic sensing element is one-dimensional semiconducting linear structure. A direct voltage is applied to the first electrostatic sensing element. A sensed object with electrostatic charge is moved to the electrostatic sensing device in a distance near but not touching the first electrostatic sensing element. A resistance changed value of the first electrostatic sensing element is measured.Type: GrantFiled: December 30, 2015Date of Patent: March 12, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Publication number: 20190064050Abstract: A method for imaging 1-D nanomaterials is provided. The method includes: providing a 1-D nanomaterials sample; immersing the 1-D nanomaterials sample in a liquid; illuminating the 1-D nanomaterials sample by a first incident light and a second incident light to cause resonance Rayleigh scattering, wherein the first incident light and the second incident light are not parallel to each other; and acquiring a resonance Rayleigh scattering image of the 1-D nanomaterials sample with a microscope.Type: ApplicationFiled: August 29, 2018Publication date: February 28, 2019Inventors: WEN-YUN WU, DONG-QI LI, JIN ZHANG, KAI-LI JIANG, SHOU-SHAN FAN
-
Publication number: 20190064073Abstract: A imaging device 1-D nanomaterials is provided. The device includes: a first light source, a second light source, a microscope with a liquid immersion object, and a carrier. The first light source is configured to provide a first incident light and the second light source is configured to provide a second incident light, the first incident light and the incident light are not parallel to each other. The carrier is configured to contain a 1-D nanomaterials sample and a liquid, both the 1-D nanomaterials sample and the liquid immersion object are immersed in the liquid.Type: ApplicationFiled: August 29, 2018Publication date: February 28, 2019Inventors: WEN-YUN WU, DONG-QI LI, JIN ZHANG, KAI-LI JIANG, SHOU-SHAN FAN
-
Patent number: 10209285Abstract: An electrometer includes a sensing module and a control module. The sensing module includes an electrostatic sensing element. The electrostatic sensing element includes two opposite ends. Each end of the electrostatic sensing element is electrically connected to the control module. When an object with electrostatic charge is near but does not touch the electrostatic sensing element, the resistance of the electrostatic sensing element can be changed. The control module electrically connect to the electrostatic sensing element, the control module measures the resistance variation ?R of the electrostatic sensing element and converts the resistance variation ?R into the static electricity potential.Type: GrantFiled: December 30, 2015Date of Patent: February 19, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Publication number: 20190025216Abstract: A device for imaging one dimension nanomaterials is provided. The device includes an optical microscope with a liquid immersion objective, a laser device, and a spectrometer. The laser device is configured to provide an incident light beam with a continuous spectrum. The spectrometer is configured to obtain spectral information of the one dimensional nanomaterials.Type: ApplicationFiled: September 27, 2018Publication date: January 24, 2019Inventors: Wen-Yun Wu, Jing-Ying Yue, Xiao-Yang Lin, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10151703Abstract: A method for imaging one dimension nanomaterials is provided. Firstly, one dimension nanomaterials sample, an optical microscope with a liquid immersion objective and a liquid are provided. Secondly, the one dimensional nanomaterials sample is immersed in the liquid. Thirdly, the one dimensional nanomaterials sample is illuminated by an incident beam to generate resonance Rayleigh scattering. Forthly, the liquid immersion objective is immersed into the liquid to get a resonance Rayleigh scattering (RRS) image of the one dimensional nanomaterials sample. Fifthly, spectra of the one dimensional nanomaterials sample are measured to obtain chirality of the one dimensional nanomaterials sample.Type: GrantFiled: August 28, 2015Date of Patent: December 11, 2018Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Wen-Yun Wu, Jing-Ying Yue, Xiao-Yang Lin, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10145879Abstract: An electrometer includes a sensing module and a control module. The sensing module includes a plurality of electrostatic sensing elements and a plurality of second electrodes. The plurality of electrostatic sensing elements are single walled carbon nanotubes or few-walled carbon nanotubes. The plurality of electrostatic sensing elements and the plurality of second electrodes are alternately arranged in a series connection. The control module is coupled to the two ends of the series connection and configured to measure a resistance variation ?R of the series connection and convert the resistance variation ?R into a static electricity potential.Type: GrantFiled: December 30, 2015Date of Patent: December 4, 2018Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan