Patents by Inventor Wenbin Gu

Wenbin Gu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110076583
    Abstract: A method of operating a fuel cell is described. The method includes controlling the temperature of the anode plate and the temperature of the cathode plate to obtain a temperature difference of at least about 2° C. between the anode plate and the cathode plate. A fuel cell is also described.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 31, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Po-Ya Abel Chuang, Wenbin Gu, Scott G. Smith
  • Publication number: 20110008702
    Abstract: A fuel cell assembly is disclosed, the fuel cell assembly including a pair of terminal plates, one terminal plate disposed at each end of the fuel cell assembly, a fuel cell disposed between a pair of end fuel cells and the terminal plates, and a thermally insulating, electrically conductive layer formed between the fuel cell and one of the terminal plates adapted to mitigate thermal losses from the end plate, and fluid condensation and ice formation in an end fuel cell. The end fuel cells of the fuel cell assembly have a membrane and/or a cathode having a thickness greater than an average thickness of a membrane and/or a cathode disposed in the fuel cell that may be used in conjunction with, or instead of, the insulating layer to further mitigate thermal losses from the end plate, and fluid condensation and ice formation in the end fuel cells.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 13, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Eric J. Connor, Daniel P. Miller, Wenbin Gu, Jeanette E. Owejan, Mark Mathias
  • Patent number: 7846591
    Abstract: The present invention is directed to an electroconductive element within an electrochemical cell that improves water management. The electroconductive element comprises an impermeable electrically conductive element and a porous liquid distribution media disposed along a major surface of the conductive element. Preferably, the liquid distribution media is in direct contact and fluid communication with a fluid distribution layer disposed between the membrane electrode assembly (MEA) and the liquid distribution media, so that liquids are drawn from the MEA through the fluid distribution layer to and through the liquid distribution media. The liquid distribution media transports liquids away from the MEA in the fuel cell. Methods of fabricating and operating fuel cells and electroconductive elements according to the present invention are also contemplated.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: December 7, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Wenbin Gu, Gerald W Fly, Mark F Mathias
  • Publication number: 20100178580
    Abstract: A bipolar plate for a fuel cell is provided that includes a pair of unipolar plates having a separator plate disposed therebetween. One of the unipolar plates is produced from a porous material to minimize cathode transport resistance at high current density. A fuel cell stack including a fuel cell and the bipolar plate is also provided.
    Type: Application
    Filed: January 13, 2009
    Publication date: July 15, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Eric J. Connor, John C. Fagley, Gerald W. Fly, Wenbin Gu, Yeh-Hung Lai, David A. Masten
  • Patent number: 7687185
    Abstract: A fuel cell includes an anode layer, a polymeric ion conductive membrane disposed over the anode layer, a cathode layer disposed over the polymeric ion conductive membrane, and an effective amount of a reactive material that corrodes at a higher rate than support carbon in the cathode layer, anode layer, or both. The reactive material is either proximate to or distributed within the cathode catalyst layer. In a variation, reactive material is also included proximate to the anode layer.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: March 30, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Jingxin Zhang, Hubert A. Gasteiger, Wenbin Gu, Paul Taichiang Yu, Jeanette E. O'Hara
  • Patent number: 7655340
    Abstract: The present invention is directed to a planar flow field design having an intake manifold and an exhaust manifold which are configured in two offset planes. A relatively short passage extends from the intake manifold through the exhaust manifold and terminates at a reactive face of a membrane electrode assembly (MEA) such that a differential flow distribution is provided from the intake manifold through the passage and across a reactive face of the MEA to the exhaust manifold.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: February 2, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Michael W Murphy, Wenbin Gu, Lewis J DiPietro
  • Publication number: 20090181268
    Abstract: A method for filling a fuel cell anode supply manifold with hydrogen prior to a start-up operation to facilitate a substantially even hydrogen distribution across the fuel cell is disclosed. The anode supply manifold is in fluid communication with a source of hydrogen. A first valve in fluid communication with the anode supply manifold and a second valve in fluid communication with an anode exhaust manifold are initially in a closed position while hydrogen is supplied to the anode inlet conduit to pressurize the fuel cell stack. The first valve is then opened to purge at least a portion of a fluid from the anode supply manifold to facilitate a filling of the manifold with hydrogen.
    Type: Application
    Filed: January 15, 2008
    Publication date: July 16, 2009
    Inventors: Gary M. Robb, Steven G. Goebel, Wenbin Gu
  • Publication number: 20090068541
    Abstract: One embodiment of the invention includes a method including providing a cathode catalyst ink comprising a first catalyst, an oxygen evolution reaction catalyst, and a solvent; and depositing the cathode catalyst ink on one of a polymer electrolyte membrane, a gas diffusion medium layer, or a decal backing.
    Type: Application
    Filed: September 3, 2008
    Publication date: March 12, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Susan G. Yan, Hubert A. Gasteiger, Paul Taichiang Yu, Wenbin Gu, Jingxin Zhang
  • Publication number: 20090029235
    Abstract: An MEA for a fuel cell that employs multiple catalyst layers to reduce the hydrogen and/or oxygen partial pressure at the membrane so as to reduce the fluoride release rate from the membrane and reduce membrane degradation. An anode side multi-layer catalyst configuration is positioned at the anode side of the MEA membrane. The anode side multi-layer catalyst configuration includes an anode side under layer positioned against the membrane and including a catalyst, an anode side middle layer positioned against the anode side under layer and not including a catalyst and an anode side catalyst layer positioned against the anode side middle layer and opposite to the anode side under layer and including a catalyst, where the amount of catalyst in the anode side catalyst layer is greater than the amount of catalyst in the anode side under layer.
    Type: Application
    Filed: July 26, 2007
    Publication date: January 29, 2009
    Applicant: GM Global Technology Operations, Inc.
    Inventors: Annette M. Brenner, Hubert A. Gasteiger, Wenbin Gu, James Leistra, Brian A. Litteer, Han Liu, Susan G. Yan, Jingxin Zhang
  • Publication number: 20080299418
    Abstract: A fuel cell stack that includes a gas diffusion media for the end cells in the stack that has less of an intrusion into the flow field channels of the end cells that the other cells, so as to increase the flow rate through the flow channels in the end cells relative to the flow rate through the flow channels in the other cells. A different diffusion media can be used in the end cells than the nominal cells, where the end cell diffusion media has less of a channel intrusion as a result of diffusion media characteristics. Also, the same diffusion media could be used in the end cells as the nominal cells, but the end cell diffusion media layers could be thinner than the nominal cell diffusion media layers. Further, a higher amount of pre-compression can be used for the diffusion media in the end cells.
    Type: Application
    Filed: June 4, 2007
    Publication date: December 4, 2008
    Applicant: GM Global Technology Operations, Inc.
    Inventors: Yeh-Hung Lai, Pinkhas A. Rapaport, Po-Ya Abel Chuang, Wenbin Gu
  • Publication number: 20080107927
    Abstract: Edge designs, especially for ePTFE-reinforced membranes for proton exchange membrane (PEM) fuel cells, wherein the designs provide a proton barrier at the electrode edge of the PEM fuel cell membrane electrode assembly (MEA) to provide, among other things, resistance to membrane chemical degradation. A portion of the ePTFE layer is imbibed with a proton-impermeable polymer at the electrode edge. The polymer can include, without limitation, B-staged epoxides, B-staged phenolics, hot melt thermoplastics, and/or thermosets or thermoplastics cast from liquid dispersions.
    Type: Application
    Filed: November 3, 2006
    Publication date: May 8, 2008
    Applicant: GM Global Technology Operations, Inc.
    Inventors: William H. Pettit, Michael K. Budinski, Wenbin Gu
  • Publication number: 20080020262
    Abstract: A fuel cell includes an anode layer, a polymeric ion conductive membrane disposed over the anode layer, a cathode layer disposed over the polymeric ion conductive membrane, and an effective amount of a reactive material that corrodes at a higher rate than support carbon in the cathode layer, anode layer, or both. The reactive material is either proximate to or distributed within the cathode catalyst layer. In a variation, reactive material is also included proximate to the anode layer.
    Type: Application
    Filed: July 24, 2006
    Publication date: January 24, 2008
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jingxin Zhang, Hubert A. Gasteiger, Wenbin Gu, Paul Taichiang Yu, Jeanette E. O'Hara
  • Publication number: 20060204831
    Abstract: A gradient of ionomeric material is generated, disposed, or otherwise provided in an electrode suitable for use in a fuel cell. The ionomer concentration, e.g., with respect to the carbon content of the catalyst layer (e.g., expressed as a ratio), is greatest in the area closest to the membrane, e.g., of the fuel cell (e.g., the membrane side), and is decreased in the area furthest from the membrane (e.g., the gas side). By way of another non-limiting example, the ionomer gradient can be formed such that the concentration (or the ratio if expressed in relation to the carbon content of the catalyst layer) can gradually, as opposed to rapidly, decrease as the distance away from the membrane increases.
    Type: Application
    Filed: May 15, 2006
    Publication date: September 14, 2006
    Inventors: Susan Yan, John Doyle, Bhaskar Sompalli, Hubert Gasteiger, Jeanette O'Hara, Wenbin Gu
  • Publication number: 20050271929
    Abstract: A fuel cell including an anode-side catalyst coated membrane and a cathode-side catalyst coated membrane. At least a portion of a reduced-permeability layer is disposed between the ionically conductive membrane and the anode-side and cathode-side gas diffusion media, wherein the reduced-permeability layer is formed of a material that has a permeability that is less than a permeability of the ionically conductive member. The reduced-permeability layer may also be formed of a material that is softer than-the ionically conductive membrane.
    Type: Application
    Filed: May 11, 2005
    Publication date: December 8, 2005
    Inventors: Bhaskar Sompalli, Brian Litteer, John Healy, Susan Yan, Hubert Gasteiger, Wenbin Gu, Gerald Fly
  • Publication number: 20050181264
    Abstract: The present invention is directed to an electroconductive element within an electrochemical cell that improves water management. The electroconductive element comprises an impermeable electrically conductive element and a porous liquid distribution media disposed along a major surface of the conductive element. Preferably, the liquid distribution media is in direct contact and fluid communication with a fluid distribution layer disposed between the membrane electrode assembly (MEA) and the liquid distribution media, so that liquids are drawn from the MEA through the fluid distribution layer to and through the liquid distribution media. The liquid distribution media transports liquids away from the MEA in the fuel cell. Methods of fabricating and operating fuel cells and electroconductive elements according to the present invention are also contemplated.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 18, 2005
    Inventors: Wenbin Gu, Gerald Fly, Mark Mathias
  • Publication number: 20050158603
    Abstract: The present invention is directed to a planar flow field design having an intake manifold and an exhaust manifold which are configured in two offset planes. A relatively short passage extends from the intake manifold through the exhaust manifold and terminates at a reactive face of a membrane electrode assembly (MEA) such that a differential flow distribution is provided from the intake manifold through the passage and across a reactive face of the MEA to the exhaust manifold.
    Type: Application
    Filed: January 16, 2004
    Publication date: July 21, 2005
    Inventors: Michael Murphy, Wenbin Gu, Lewis DiPietro