Patents by Inventor Wendell Lim
Wendell Lim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20190062790Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: March 7, 2018Publication date: February 28, 2019Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi, Emmanuelle Charpentier
-
Publication number: 20190010520Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: September 19, 2018Publication date: January 10, 2019Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi, Emmanuelle Charpentier
-
Publication number: 20190002923Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: September 19, 2018Publication date: January 3, 2019Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi, Emmanuelle Charpentier
-
Publication number: 20190002921Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: September 19, 2018Publication date: January 3, 2019Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi, Emmanuelle Charpentier
-
Publication number: 20190002922Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: September 19, 2018Publication date: January 3, 2019Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi, Emmanuelle Charpentier
-
Publication number: 20180282764Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: November 3, 2017Publication date: October 4, 2018Inventors: Martin Jinek, Emmanuelle Charpentier, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi, Jennifer A. Doudna
-
Publication number: 20180016538Abstract: The disclosed apparatus, systems and methods relate to an illumination opto-plate configured to specifically light the wells of a culture plate.Type: ApplicationFiled: July 17, 2017Publication date: January 18, 2018Inventors: Lukasz Bugaj, Wendell Lim
-
Publication number: 20170233762Abstract: Scaffold RNAs are provided. Compositions and methods are also provided for making and using scaffold RNAs.Type: ApplicationFiled: September 29, 2015Publication date: August 17, 2017Inventors: Jesse Zalatan, Wendell Lim, Lei Qi
-
Publication number: 20170051310Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: April 26, 2016Publication date: February 23, 2017Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi, Emmanuelle Charpentier
-
Publication number: 20170051312Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: April 4, 2016Publication date: February 23, 2017Inventors: Martin Jinek, Emmanuelle Charpentier, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi, Jennifer A. Doudna
-
Publication number: 20160138008Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: November 16, 2015Publication date: May 19, 2016Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi, Emmanuelle Charpentier
-
Publication number: 20160130608Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: April 13, 2015Publication date: May 12, 2016Inventors: Jennifer A. Doudna, Martin Jinek, Emmanuelle Charpentier, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi
-
Publication number: 20160130609Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: April 13, 2015Publication date: May 12, 2016Inventors: Jennifer A. Doudna, Martin Jinek, Emmanuelle Charpentier, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi
-
Publication number: 20160068864Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: April 13, 2015Publication date: March 10, 2016Inventors: Jennifer A. Doudna, Martin Jinek, Emmanuelle Charpentier, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi
-
Publication number: 20160060654Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: April 13, 2015Publication date: March 3, 2016Inventors: Jennifer A. Doudna, Martin Jinek, Emmanuelle Charpentier, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi
-
Publication number: 20160046961Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multi-cellular organisms.Type: ApplicationFiled: March 15, 2013Publication date: February 18, 2016Inventors: Martin JINEK, Emmanuelle CHARPENTIER, Krzysztof CHYLINSKI, James Harrison DOUDNA CATE, Wendell LIM, Lei QI, Jennifer A. DOUDNA
-
Patent number: 8828658Abstract: The invention provides methods, materials and systems of regulating association between proteins of interest using light. In an aspect, the invention takes advantage of the ability of phytochromes to change conformation upon exposure to appropriate light conditions, and to bind in a conformation-dependent manner to cognate proteins called phytochrome-interacting factors. The invention comprises a method of regulating interaction between a first protein of interest and second protein within a cell by light. Such a method optionally comprises providing in the cell (1) a first protein construct which comprises the first protein, a phytochrome domain (PHD), and (2) providing in the cell a second protein construct which comprises the second protein and a phytochrome domain-interacting peptide (PIP) that can bind selectively to the Pfr state, but not to the Pr state, of the phytochrome domain.Type: GrantFiled: May 26, 2009Date of Patent: September 9, 2014Assignee: The Regents of the University of CaliforniaInventors: Christopher A. Voigt, Anselm Levskaya, Wendell Lim
-
Publication number: 20140068797Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.Type: ApplicationFiled: March 15, 2013Publication date: March 6, 2014Applicants: UNIVERSITY OF VIENNA, THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Jennifer A. Doudna, Martin Jinek, Emmanuelle Charpentier, Krzysztof Chylinski, James Harrison Doudna Cate, Wendell Lim, Lei Qi
-
Patent number: 7604805Abstract: Protein logic gates are made from autoregulated fusion proteins comprising an output domain and a plurality of input domains, wherein at least one of the input domains is heterologous to the output domain, and the input domains interact with each other to allosterically and external, ligand-dependently regulate the output domain. The output domain may be constitutively active, and in the absence of the ligand, the input domains interact to inhibit the output domain. The activity of the output domain is user discretionary, and may include activities that are catalytic, label-generative, metabolic-regulative, apototic, specific-binding, etc. Multiple input domains can cooperatively regulate the fusion protein in a wide variety of functionalities, including as an OR-gate, an AND-gate, and an AND-NOT-gate. The gates may be incorporated into cells and therein used to modulate cell function.Type: GrantFiled: July 3, 2003Date of Patent: October 20, 2009Assignee: Regents of the University of CaliforniaInventors: Wendell Lim, John Dueber, Brian Yeh
-
Publication number: 20050004347Abstract: Protein logic gates are made from autoregulated fusion proteins comprising an output domain and a plurality of input domains, wherein at least one of the input domains is heterologous to the output domain, and the input domains interact with each other to allosterically and external, ligand-dependently regulate the output domain. The output domain may be constitutively active, and in the absence of the ligand, the input domains interact to inhibit the output domain. The activity of the output domain is user discretionary, and may include activities that are catalytic, label-generative, metabolic-regulative, apototic, specific-binding, etc. Multiple input domains can cooperatively regulate the fusion protein in a wide variety of functionalities, including as an OR-gate, an AND-gate, and an AND-NOT-gate. The gates may be incorporated into cells and therein used to modulate cell function.Type: ApplicationFiled: July 3, 2003Publication date: January 6, 2005Inventors: Wendell Lim, John Dueber, Brian Yeh