Patents by Inventor Wendi CHANG

Wendi CHANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230301131
    Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 21, 2023
    Inventors: Gloria Wong, Jaein Choi, Sunggu Kang, Hairong Tang, Xiaodan Zhu, Wendi Chang, Kanuo C. Kustra, Rui Liu, Cheng Chen, Teruo Sasagawa, Wookyung Bae
  • Publication number: 20230240100
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
    Type: Application
    Filed: March 31, 2023
    Publication date: July 27, 2023
    Inventors: Jaein Choi, Hairong Tang, Gloria Wong, Sunggu Kang, Younggu Lee, Gwanwoo Park, Chun-Yao Huang, Andrew Lin, Cheuk Chi Lo, Enkhamgalan Dorjgotov, Michael Slootsky, Rui Liu, Wendi Chang, Cheng Chen
  • Patent number: 11700738
    Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: July 11, 2023
    Assignee: Apple Inc.
    Inventors: Gloria Wong, Jaein Choi, Sunggu Kang, Hairong Tang, Xiaodan Zhu, Wendi Chang, Kanuo C. Kustra, Rui Liu, Cheng Chen, Teruo Sasagawa, Wookyung Bae
  • Patent number: 11647650
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: May 9, 2023
    Assignee: Apple Inc.
    Inventors: Jaein Choi, Hairong Tang, Gloria Wong, Sunggu Kang, Younggu Lee, Gwanwoo Park, Chun-Yao Huang, Andrew Lin, Cheuk Chi Lo, Enkhamgalan Dorjgotov, Michael Slootsky, Rui Liu, Wendi Chang, Cheng Chen
  • Patent number: 11309372
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have a steep sidewall, a sidewall with an undercut, or a sidewall surface with a plurality of curves to disrupt continuity of the OLED layers. A control gate that is coupled to a bias voltage and covered by gate dielectric may be used to form an organic thin-film transistor that shuts the leakage current channel between adjacent anodes on the display.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 19, 2022
    Assignee: Apple Inc.
    Inventors: Jaein Choi, Andrew Lin, Cheuk Chi Lo, Chun-Yao Huang, Gloria Wong, Hairong Tang, Hitoshi Yamamoto, James E. Pedder, KiBeom Kim, Kwang Ohk Cheon, Lei Yuan, Michael Slootsky, Rui Liu, Steven E. Molesa, Sunggu Kang, Wendi Chang, Chun-Ming Tang, Cheng Chen, Ivan Knez, Enkhamgalan Dorjgotov, Giovanni Carbone, Graham B. Myhre, Jungmin Lee
  • Publication number: 20220005894
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 6, 2022
    Inventors: Jaein Choi, Hairong Tang, Gloria Wong, Sunggu Kang, Younggu Lee, Gwanwoo Park, Chun-Yao Huang, Andrew Lin, Cheuk Chi Lo, Enkhamgalan Dorjgotov, Michael Slootsky, Rui Liu, Wendi Chang, Cheng Chen
  • Patent number: 11211587
    Abstract: A display may have an array of organic light-emitting diode (OLED) pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and cross-talk, the thickness of at least one of the OLED layers may be reduced. To maintain the optical cavity of the pixels, transparent optical spacer structures may be inserted. Alternatively, the thickness of the anodes can be increased. To accommodate a common prime layer within the OLED layers, the optical spacers or anodes may be separately patterned to have different thicknesses. Grating structures and photonic crystal structures may be embedded as part of the optical spacers to help control emission at selected viewing angles.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: December 28, 2021
    Assignee: Apple Inc.
    Inventors: Kwang Ohk Cheon, Aleksandr N. Polyakov, Chen-Yue Li, Chuan-Jung Lin, KiBeom Kim, Nai-Chih Kao, Rui Liu, Wendi Chang
  • Patent number: 11145700
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: October 12, 2021
    Assignee: Apple Inc.
    Inventors: Jaein Choi, Hairong Tang, Gloria Wong, Sunggu Kang, Younggu Lee, Gwanwoo Park, Chun-Yao Huang, Andrew Lin, Cheuk Chi Lo, Enkhamgalan Dorjgotov, Michael Slootsky, Rui Liu, Wendi Chang, Cheng Chen
  • Publication number: 20210057670
    Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
    Type: Application
    Filed: May 29, 2020
    Publication date: February 25, 2021
    Inventors: Gloria Wong, Jaein Choi, Sunggu Kang, Hairong Tang, Xiaodan Zhu, Wendi Chang, Kanuo C. Kustra, Rui Liu, Cheng Chen, Teruo Sasagawa, Wookyung Bae
  • Publication number: 20200312930
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
    Type: Application
    Filed: January 16, 2020
    Publication date: October 1, 2020
    Inventors: Jaein Choi, Hairong Tang, Gloria Wong, Sunggu Kang, Younggu Lee, Gwanwoo Park, Chun-Yao Huang, Andrew Lin, Cheuk Chi Lo, Enkhamgalan Dorjgotov, Michael Slootsky, Rui Liu, Wendi Chang, Cheng Chen
  • Patent number: 10658441
    Abstract: A display may have an array of pixels formed from organic light-emitting diodes and thin-film transistor circuitry. Each pixel may include organic layers interposed between an anode and a cathode. The organic layers may emit out-coupled light that escapes the display and waveguided light that is waveguided within the organic layers. A reflector may be placed at the edge of the organic layers to reflect the waveguided light out of the display. The reflector may be located within a pixel definition layer and may be formed from metal or may be formed from one or more interfaces between high-refractive-index material and low-refractive-index material. The reflector may be formed from an extended portion of the pixel anode. The reflector may be formed from light-reflecting particles that are suspended in the pixel definition layer.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: May 19, 2020
    Assignee: Apple Inc.
    Inventors: Kwang Ohk Cheon, Cheng Chen, Chien Lu, Chih-Lei Chen, Chin Wei Hsu, Hui Lu, KiBeom Kim, Lun Tsai, Meng-Huan Ho, Nai-Chih Kao, Pei-Ling Lin, Rui Liu, Shan-Jen Yu, Wendi Chang, Yusuke Fujino
  • Publication number: 20200066815
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have a steep sidewall, a sidewall with an undercut, or a sidewall surface with a plurality of curves to disrupt continuity of the OLED layers. A control gate that is coupled to a bias voltage and covered by gate dielectric may be used to form an organic thin-film transistor that shuts the leakage current channel between adjacent anodes on the display.
    Type: Application
    Filed: April 27, 2018
    Publication date: February 27, 2020
    Inventors: Jaein Choi, Andrew Lin, Cheuk Chi Lo, Chun-Yao Huang, Gloria Wong, Hairong Tang, Hitoshi Yamamoto, James E. Pedder, KiBeom Kim, Kwang Ohk Cheon, Lei Yuan, Michael Slootsky, Rui Liu, Steven E. Molesa, Sunggu Kang, Wendi Chang, Chun-Ming Tang, Cheng Chen, Ivan Knez, Enkhamgalan Dorjgotov, Giovanni Carbone, Graham B. Myhre, Jungmin Lee
  • Publication number: 20200035951
    Abstract: A display may have an array of organic light-emitting diode (OLED) pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and cross-talk, the thickness of at least one of the OLED layers may be reduced. To maintain the optical cavity of the pixels, transparent optical spacer structures may be inserted. Alternatively, the thickness of the anodes can be increased. To accommodate a common prime layer within the OLED layers, the optical spacers or anodes may be separately patterned to have different thicknesses. Grating structures and photonic crystal structures may be embedded as part of the optical spacers to help control emission at selected viewing angles.
    Type: Application
    Filed: July 25, 2019
    Publication date: January 30, 2020
    Inventors: Kwang Ohk Cheon, Aleksandr N. Polyakov, Chen-Yue Li, Chuan-Jung Lin, KiBeom Kim, Nai-Chih Kao, Rui Liu, Wendi Chang
  • Patent number: 10256596
    Abstract: The disclosure relates to method and apparatus for micro-contact printing of micro-electromechanical systems (“MEMS”) in a solvent-free environment. The disclosed embodiments enable forming a composite membrane over a parylene layer and transferring the composite structure to a receiving structure to form one or more microcavities covered by the composite membrane. The parylene film may have a thickness in the range of about 100 nm-2 microns; 100 nm-1 micron, 200-300 nm, 300-500 nm, 500 nm to 1 micron and 1-30 microns. Next, one or more secondary layers are formed over the parylene to create a composite membrane. The composite membrane may have a thickness of about 100 nm to 700 nm to several microns. The composite membrane's deflection in response to external forces can be measured to provide a contact-less detector. Conversely, the composite membrane may be actuated using an external bias to cause deflection commensurate with the applied bias.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: April 9, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Jeffrey Hastings Lang, Apoorva Murarka, Annie I-Jen Wang, Wendi Chang
  • Publication number: 20190067394
    Abstract: A display may have an array of pixels formed from organic light-emitting diodes and thin-film transistor circuitry. Each pixel may include organic layers interposed between an anode and a cathode. The organic layers may emit out-coupled light that escapes the display and waveguided light that is waveguided within the organic layers. A reflector may be placed at the edge of the organic layers to reflect the waveguided light out of the display. The reflector may be located within a pixel definition layer and may be formed from metal or may be formed from one or more interfaces between high-refractive-index material and low-refractive-index material, The reflector may be formed from an extended portion of the pixel anode. The reflector may be formed from light-reflecting particles that are suspended in the pixel definition layer.
    Type: Application
    Filed: August 27, 2018
    Publication date: February 28, 2019
    Inventors: Kwang Ohk Cheon, Cheng Chen, Chien Lu, Chih-Lei Chen, Chin Wei Hsu, Hui Lu, KiBeom Kim, Lun Tsai, Meng-Huan Ho, Nai-Chih Kao, Pei-Ling Lin, Rui Liu, Shan-Jen Yu, Wendi Chang, Yusuke Fujino
  • Publication number: 20180100767
    Abstract: A radiation detection technique employs field enhancing structures and electroluminescent materials to converts incident Terahertz (THz) radiation into visible light and/or infrared light. In this technique, the field-enhancing structures, such as split ring resonators or micro-slits, enhances the electric field of incoming THz light within a local area, where the electroluminescent material is applied. The enhanced electric field then induces the electroluminescent material to emit visible and/or infrared light via electroluminescent process. A detector such as avalanche photodiode can detect and measure the emitted light. This technique allows cost-effective detection of THz radiation at room temperatures.
    Type: Application
    Filed: November 7, 2017
    Publication date: April 12, 2018
    Inventors: Brandt Christopher Pein, Harold Young Hwang, Wendi Chang, Keith Adam Nelson, Vladimir Bulovic, Nathaniel C. Brandt
  • Patent number: 9810578
    Abstract: A radiation detection technique employs field enhancing structures and electroluminescent materials to converts incident Terahertz (THz) radiation into visible light and/or infrared light. In this technique, the field-enhancing structures, such as split ring resonators or micro-slits, enhances the electric field of incoming THz light within a local area, where the electroluminescent material is applied. The enhanced electric field then induces the electroluminescent material to emit visible and/or infrared light via electroluminescent process. A detector such as avalanche photodiode can detect and measure the emitted light. This technique allows cost-effective detection of THz radiation at room temperatures.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: November 7, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Brandt Christopher Pein, Harold Young Hwang, Wendi Chang, Keith A. Nelson, Vladimir Bulovic, Nathaniel C. Brandt
  • Publication number: 20160380404
    Abstract: The disclosure relates to method and apparatus for micro-contact printing of micro-electromechanical systems (“MEMS”) in a solvent-free environment. The disclosed embodiments enable forming a composite membrane over a parylene layer and transferring the composite structure to a receiving structure to form one or more microcavities covered by the composite membrane. The parylene film may have a thickness in the range of about 100 nm-2 microns; 100 nm-1 micron, 200-300 nm, 300-500 nm, 500 nm to 1 micron and 1-30 microns. Next, one or more secondary layers are formed over the parylene to create a composite membrane. The composite membrane may have a thickness of about 100 nm to 700 nm to several microns. The composite membrane's deflection in response to external forces can be measured to provide a contact-less detector. Conversely, the composite membrane may be actuated using an external bias to cause deflection commensurate with the applied bias.
    Type: Application
    Filed: April 27, 2016
    Publication date: December 29, 2016
    Inventors: Vladimir BULOVIC, Jeffrey Hastings LANG, Apoorva MURARKA, Annie I-Jen WANG, Wendi CHANG
  • Publication number: 20160258807
    Abstract: A radiation detection technique employs field enhancing structures and electroluminescent materials to converts incident Terahertz (THz) radiation into visible light and/or infrared light. In this technique, the field-enhancing structures, such as split ring resonators or micro-slits, enhances the electric field of incoming THz light within a local area, where the electroluminescent material is applied. The enhanced electric field then induces the electroluminescent material to emit visible and/or infrared light via electroluminescent process. A detector such as avalanche photodiode can detect and measure the emitted light. This technique allows cost-effective detection of THz radiation at room temperatures.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 8, 2016
    Inventors: Brandt Christopher Pein, Harold Young Hwang, Wendi Chang, Keith A. Nelson, Vladimir Bulovic, Nathaniel C. Brandt
  • Patent number: 9391423
    Abstract: The disclosure relates to method and apparatus for micro-contact printing of micro-electromechanical systems (“MEMS”) in a solvent-free environment. The disclosed embodiments enable forming a composite membrane over a parylene layer and transferring the composite structure to a receiving structure to form one or more microcavities covered by the composite membrane. The parylene film may have a thickness in the range of about 100 nm-2 microns; 100 nm-1 micron, 200-300 nm, 300-500 nm, 500 nm to 1 micron and 1-30 microns. Next, one or more secondary layers are formed over the parylene to create a composite membrane. The composite membrane may have a thickness of about 100 nm to 700 nm to several microns. The composite membrane's deflection in response to external forces can be measured to provide a contact-less detector. Conversely, the composite membrane may be actuated using an external bias to cause deflection commensurate with the applied bias.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: July 12, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Jeffrey Hastings Lang, Apoorva Murarka, Annie I-Jen Wang, Wendi Chang