Patents by Inventor Wendy D. Bennett

Wendy D. Bennett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9722277
    Abstract: An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: August 1, 2017
    Assignee: Battelle Memorial Institute
    Inventors: Jie Xiao, Dongping Lu, Yuyan Shao, Wendy D. Bennett, Gordon L. Graff, Jun Liu, Ji-Guang Zhang
  • Publication number: 20160126589
    Abstract: An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 5, 2016
    Applicant: Battelle Memorial Institute
    Inventors: Jie Xiao, Dongping Lu, Yuyan Shao, Wendy D. Bennett, Gordon L. Graff, Jun Liu, Ji-Guang Zhang
  • Publication number: 20160126582
    Abstract: Disclosed are preformed solid electrolyte interface (SEI) film graphite electrodes in lithium-sulfur based chemistry energy storage systems and methods of making the preformed SEI films on graphite electrodes to expand the use of graphite-based electrodes in previously non-graphite anode energy systems, such as lithium-sulfur battery systems. Also disclosed are lithium-ion sulfur battery systems comprising electrolytes that do not include an alkyl carbonate, such as those that do not include EC, and graphite anodes having preformed alkyl carbonate, such as EC-based SEI films.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 5, 2016
    Inventors: Jie Xiao, Yuyan Shao, Dongping Lu, Wendy D. Bennett, Jun Liu, Ji-Guang Zhang, Gordon L. Graff
  • Patent number: 9040200
    Abstract: A method for forming a nanocomposite material, the nanocomposite material formed thereby, and a battery made using the nanocomposite material. Metal oxide and graphene are placed in a solvent to form a suspension. The suspension is then applied to a current collector. The solvent is then evaporated to form a nanocomposite material. The nanocomposite material is then electrochemically cycled to form a nanocomposite material of at least one metal oxide in electrical communication with at least one graphene layer.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: May 26, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, Daiwon Choi, Wendy D. Bennett, Gordon L. Graff, Yongsoon Shin
  • Patent number: 8955217
    Abstract: An edge-sealed barrier film composite. The composite includes a substrate and at least one initial barrier stack adjacent to the substrate. The at least one initial barrier stack includes at least one decoupling layer and at least one barrier layer. One of the barrier layers has an area greater than the area of one of the decoupling layers. The decoupling layer is sealed by the first barrier layer within the area of barrier material. An edge-sealed, encapsulated environmentally sensitive device is provided. A method of making the edge-sealed barrier film composite is also provided.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: February 17, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Paul Burrows, J. Chris Pagano, Eric S. Mast, Peter M. Martin, Gordon L. Graff, Mark E. Gross, Charles C. Bonham, Wendy D. Bennett, Michael G. Hall
  • Publication number: 20140023925
    Abstract: A method for forming a nanocomposite material, the nanocomposite material formed thereby, and a battery made using the nanocomposite material. Metal oxide and graphene are placed in a solvent to form a suspension. The suspension is then applied to a current collector. The solvent is then evaporated to form a nanocomposite material. The nanocomposite material is then electrochemically cycled to form a nanocomposite material of at least one metal oxide in electrical communication with at least one graphene layer.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 23, 2014
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jun Liu, Daiwon Choi, Wendy D. Bennett, Gordon L. Graff, Yongsoon Shin
  • Patent number: 8557441
    Abstract: A method for forming a nanocomposite material, the nanocomposite material formed thereby, and a battery made using the nanocomposite material. Metal oxide and graphene are placed in a solvent to form a suspension. The suspension is then applied to a current collector. The solvent is then evaporated to form a nanocomposite material. The nanocomposite material is then electrochemically cycled to form a nanocomposite material of at least one metal oxide in electrical communication with at least one graphene layer.
    Type: Grant
    Filed: October 9, 2010
    Date of Patent: October 15, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, Daiwon Choi, Wendy D Bennett, Gordon L Graff, Yongsoon Shin
  • Publication number: 20130146133
    Abstract: A thin-film photovoltaic solar cell device is disclosed. A transparent conductive oxide (TCO) layer is disposed on a substrate as a front contact. A window layer is disposed on the TCO layer. A metal oxide layer is disposed on the window layer. An absorber layer is disposed on the metal oxide layer. A back contact layer is disposed on the absorber layer. In one embodiment, the device includes a high resistance barrier (HRT) layer interposed between the window layer and the TCO layer.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 13, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: John P. Lemmon, Evgueni Polikarpov, Wendy D. Bennett
  • Publication number: 20120118855
    Abstract: An edge-sealed barrier film composite. The composite includes a substrate and at least one initial barrier stack adjacent to the substrate. The at least one initial barrier stack includes at least one decoupling layer and at least one barrier layer. One of the barrier layers has an area greater than the area of one of the decoupling layers. The decoupling layer is sealed by the first barrier layer within the area of barrier material. An edge-sealed, encapsulated environmentally sensitive device is provided. A method of making the edge-sealed barrier film composite is also provided.
    Type: Application
    Filed: January 19, 2012
    Publication date: May 17, 2012
    Inventors: Paul E. Burrows, J. Chris Pagano, Eric S. Mast, Peter M. Martin, Gordon L. Graff, Mark E. Gross, Charles C. Bonham, Wendy D. Bennett, Michael G. Hall
  • Publication number: 20120088158
    Abstract: A method for forming a nanocomposite material, the nanocomposite material formed thereby, and a battery made using the nanocomposite material. Metal oxide and graphene are placed in a solvent to form a suspension. The suspension is then applied to a current collector. The solvent is then evaporated to form a nanocomposite material. The nanocomposite material is then electrochemically cycled to form a nanocomposite material of at least one metal oxide in electrical communication with at least one graphene layer.
    Type: Application
    Filed: October 9, 2010
    Publication date: April 12, 2012
    Inventors: Jun Liu, Daiwon Choi, Wendy D. Bennett, Gordon L. Graff, Yongsoon Shin
  • Patent number: 8088502
    Abstract: A durable coating made up of superimposed microlayers of preselected materials, and a method of making and utilizing such a coating. In one embodiment of the invention, at least 200 microlayers of at least one transparent material, having a thickness of less than 50 nms are superimposed in a sequential manner so as to obtain a desired arrangement between the layers. This structure then forms a transparent coating that has strength characteristics that are substantially greater than the strength of a layer of the coating material alone.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: January 3, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Peter M. Martin, Charles H. Henager, Jr., Wendy D. Bennett, Ralph E. Williford
  • Publication number: 20100193468
    Abstract: An edge-sealed, encapsulated environmentally sensitive device. The device includes an environmentally sensitive device, and at least one edge-sealed barrier stack. The edge-sealed barrier stack includes a decoupling layer and at least two barrier layers. The environmentally sensitive device is sealed between an edge-sealed barrier stack and either a substrate or another edge-sealed barrier stack. A method of making the edge-sealed, encapsulated environmentally sensitive device is also disclosed.
    Type: Application
    Filed: April 12, 2010
    Publication date: August 5, 2010
    Inventors: Paul E. Burrows, Eric S. Mast, Peter M. Martin, Gordon L. Graff, Mark E. Gross, Charles C. Bonham, Wendy D. Bennett, Michael G. Hall
  • Patent number: 7727601
    Abstract: An edge-sealed, encapsulated environmentally sensitive device. The device includes an environmentally sensitive device, and at least one edge-sealed barrier stack. The edge-sealed barrier stack includes a decoupling layer and at least two barrier layers. The environmentally sensitive device is sealed between an edge-sealed barrier stack and either a substrate or another edge-sealed barrier stack. A method of making the edge-sealed, encapsulated environmentally sensitive device is also disclosed.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: June 1, 2010
    Assignee: Vitex Systems, Inc.
    Inventors: Paul E. Burrows, Eric S. Mast, Peter M. Martin, Gordon L. Graff, Mark E. Gross, Charles C. Bonham, Wendy D. Bennett, Michael G. Hall
  • Publication number: 20090208754
    Abstract: A method of making an edge-sealed, encapsulated environmentally sensitive device. The method includes providing an environmentally sensitive device on a substrate; depositing a decoupling layer through one mask, the decoupling layer adjacent to the environmentally sensitive device, the decoupling layer having a discrete area and covering the environmentally sensitive device; increasing the distance between the one mask and the substrate; and depositing a first barrier layer through the one mask, the first barrier layer adjacent to the decoupling layer, the first barrier layer having an area greater than the discrete area of the decoupling layer and covering the decoupling layer, the decoupling layer being sealed between the edges of the first barrier layer and the substrate or an optional second barrier layer.
    Type: Application
    Filed: December 30, 2008
    Publication date: August 20, 2009
    Applicant: VITEX SYSTEMS, INC.
    Inventors: Xi Chu, Paul E. Burrows, Eric S. Mast, Peter M. Martin, Gordon L. Graff, Mark E. Gross, Charles C. Bonham, Wendy D. Bennett, Michael G. Hall, Martin Philip Rosenblum
  • Publication number: 20090191342
    Abstract: Methods of making an edge-sealed, encapsulated environmentally sensitive device. One method includes providing an environmentally sensitive device with a contact on a substrate; depositing a decoupling layer adjacent to the environmentally sensitive device, the decoupling layer having a discrete area and covering the environmentally sensitive device and not covering the contact, the decoupling layer deposited using a printing process; depositing a first barrier layer adjacent to the decoupling layer, the first barrier layer having a first area greater than the discrete area of the decoupling layer, and the first barrier layer having a second area covering the decoupling layer and the contact, the decoupling layer being sealed between the edges of the first barrier layer and the substrate or an optional second barrier layer; and removing the second area of the first barrier layer from the contact.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 30, 2009
    Applicant: VITEX SYSTEMS, INC.
    Inventors: Xi Chu, Paul E. Burrows, Eric S. Mast, Peter M. Martin, Gordon L. Graff, Mark E. Gross, Charles C. Bonham, Wendy D. Bennett, Michael G. Hall, Martin Philip Rosenblum
  • Publication number: 20080070034
    Abstract: A durable coating made up of superimposed microlayers of preselected materials, and a method of making and utilizing such a coating. In one embodiment of the invention, at least 200 microlayers of at least one transparent material, having a thickness of less than 50 nms are superimposed in a sequential manner so as to obtain a desired arrangement between the layers. This structure then forms a transparent coating that has strength characteristics that are substantially greater than the strength of a layer of the coating material alone.
    Type: Application
    Filed: September 20, 2007
    Publication date: March 20, 2008
    Inventors: Peter M. Martin, Charles H. Henager, Wendy D. Bennett, Ralph E. Williford
  • Patent number: 6699384
    Abstract: Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating “plug and play” concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: March 2, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Yuehe Lin, Wendy D. Bennett, Charles Timchalk, Karla D. Thrall
  • Publication number: 20030203210
    Abstract: A multi-layer barrier coating on a flexible substrate exhibits improved resistance to gas and liquid permeation. The multi-layer barrier coating generally comprises alternating polymer and inorganic layers, and the layer immediately adjacent to the flexible substrate and the topmost isolation layer may both be inorganic layers. The surface of each deposited inorganic layers may be plasma-treated prior to the deposition of the polymer layer thereon, while the surfaces of the polymer layers are generally not plasma-treated.
    Type: Application
    Filed: April 30, 2002
    Publication date: October 30, 2003
    Applicant: Vitex Systems, Inc.
    Inventors: Gordon Lee Graff, Mark Edward Gross, Wendy D. Bennett, Michael Gene Hall, Peter Maclyn Martin, Eric Sidney Mast, John Chris Pagano, Nicole Rutherford, Mac R. Zumhoff
  • Patent number: 6533840
    Abstract: The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: March 18, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Peter M. Martin, Wendy D. Bennett, Dean W. Matson, Donald C. Stewart, Monte K. Drost, Robert S. Wegeng, Joseph M. Perez, Xiangdong Feng, Jun Liu
  • Patent number: 6494614
    Abstract: A laminated microchannel device is described in which there is a unit operation process layer that has longitudinal channel. The longitudinal channel is cut completely through the layer in which the unit process operation resides. Both the device structure and method of making the device provide significant advantages in terms of simplicity and efficiency. A static mixing unit that can be incorporated in the laminated microchannel device is also described.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: December 17, 2002
    Assignee: Battelle Memorial Institute
    Inventors: Wendy D. Bennett, Donald J. Hammerstrom, Peter M. Martin, Dean W. Matson