Patents by Inventor Wendy E. Brown

Wendy E. Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220025331
    Abstract: Methods and systems for enhancing cell populations such as chondrocytes for tissue engineering applications, e.g., for production of neocartilage. The methods and systems of the present invention feature the introduction of a hypotonic buffer to the cells during the cell isolation process, which results in neotissue (e.g., neocartilage) constructs that are significantly more mechanically robust as compared to those not treated with hypotonic buffer. The methods and systems may further comprise introducing cytochalasin D to cells purified with a hypotonic buffer, which can further bolster the mechanical properties and matrix deposition of the cells. The methods and systems result in neocartilage engineered from chondrocytes, for example, from fetal aged tissue, having compressive properties on par with native adult articular cartilage.
    Type: Application
    Filed: October 7, 2021
    Publication date: January 27, 2022
    Inventors: Kyriacos A. Athanasiou, Jerry C. Hu, Wendy E. Brown
  • Publication number: 20220001080
    Abstract: The present invention is a multi-stage treatment that heals tissue or organ damage (e.g., linear defects, fissures, and fibrillations, as well as focal and large defects) in collagen-rich tissues and organs such as articular cartilage. The present invention includes methods 1) to prime tissues in preparation for treatment, which comprises “melting” the tissue matrix, 2) to add or fill the damaged area with a “melding” agent, comprising of endogenous or exogenous tissue matrix, with or without cells, with or without exogenous biomaterials, and with or without endogenous or exogenous enzymes, such that the melding agent enhances anchoring into the defect for the purpose of integration and/or tissue healing. The Melt-and-Meld process can also be applied in conjunction with any existing treatments of tissue or organ defects.
    Type: Application
    Filed: July 6, 2021
    Publication date: January 6, 2022
    Inventors: Kyriacos A. Athanasiou, Jerry C. Hu, Heenam Kwon, Wendy E. Brown
  • Publication number: 20190085292
    Abstract: Methods and systems for enhancing cell populations such as chondrocytes for tissue engineering applications, e.g., for production of neocartilage. The methods and systems of the present invention feature the introduction of a hypotonic buffer to the cells during the cell isolation process, which results in neotissue (e.g., neocartilage) constructs that are significantly more mechanically robust as compared to those not treated with hypotonic buffer. The methods and systems may further comprise introducing cytochalasin D to cells purified with hypotonic buffer, which can further bolster the mechanical properties and matrix deposition of the cells. The methods and systems result in neocartilage engineered from chondrocytes, for example, from fetal aged tissue, having compressive properties on par with native adult articular cartilage.
    Type: Application
    Filed: September 20, 2018
    Publication date: March 21, 2019
    Inventors: Kyriacos A. Athanasiou, Jerry C. Hu, Wendy E. Brown
  • Publication number: 20110281333
    Abstract: The present invention relates to a method for enhancing the growth of single-cell organisms, such as methanogens. The growth of the single cell organisms includes consuming carbon dioxide to produce methane. The method can include providing a porous solid having an internal surface with a surface charge density, adhering the single-cell organism to the internal surface of the porous solid, populating the internal surface with the single-celled organism at least to confluence, introducing to the single-cell organism essential macronutrients consumed in the production of methane, and controlling the temperature conditions and pH conditions to allow the single-cell organism to produce methane.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 17, 2011
    Inventors: Paul W. Brown, Wendy E. Brown
  • Publication number: 20110271869
    Abstract: Methods of reducing hydroxyl ions in concrete pore solutions are provided. Such methods are useful in providing resistance to gels which form in concrete due to the alkali-silica (ASR) reaction. The methods comprise adding a salt or mixture thereof to the concrete, in aqueous or solid form, the salt or salt mixture having cations higher in valence than the anions. The methods also comprise adding an acidic phosphate or a silicon-containing alkoxide to the concrete. The methods further comprise resisting and/or inhibiting ASR in airfield runway concrete pore solutions by applying a soluble salt or a mixture of soluble salts in solution or a deicing salt mixture in situ to the runway concrete. All of the above methods are useful in reducing hydroxyl ions in concrete. Such methods can be used to resist ASR in fresh concrete, in concrete that is setting, or in hardened concrete.
    Type: Application
    Filed: July 22, 2011
    Publication date: November 10, 2011
    Applicant: 352 East Irvin Avenue Limited Partnership
    Inventors: Paul W. Brown, Wendy E. Brown
  • Patent number: 8021477
    Abstract: Methods of reducing hydroxyl ions in concrete pore solutions are provided. Such methods are useful in providing resistance to gels which form in concrete due to the alkali-silica (ASR) reaction. The methods comprise adding a salt or mixture thereof to the concrete, in aqueous or solid form, the salt or salt mixture having cations higher in valence than the anions. The methods also comprise adding an acidic phosphate or a silicon-containing alkoxide to the concrete. The methods further comprise resisting and/or inhibiting ASR in airfield runway concrete pore solutions by applying a soluble salt or a mixture of soluble salts in solution or a deicing salt mixture in situ to the runway concrete. All of the above methods are useful in reducing hydroxyl ions in concrete. Such methods can be used to resist ASR in fresh concrete, in concrete that is setting, or in hardened concrete.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: September 20, 2011
    Inventors: Paul W. Brown, Wendy E. Brown