Patents by Inventor Wenhua Lin

Wenhua Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10718906
    Abstract: Embodiments of the present disclosure are directed toward techniques and configurations for an optical device having a multiplexer and/or demultiplexer with an input and/or output optical waveguide including one or more waveguide segments tapered according to a non-linear function such as a curve. In embodiments, the one or more waveguide segments is tapered according to, e.g., a quadratic function, a parabolic function, or an exponential function. In accordance with some embodiments, the tapered segment assists in spatially dispersing the propagating light along a substantially uniform phase wavefront at a mirror that includes an echelle grating surface that is shaped to receive/reflect the light at the substantially uniform phase wavefront. In embodiments, the one or more waveguide segments is tapered according to a curve to receive a portion of light from the substantially uniform phase wavefront at the echelle grating surface. Additional embodiments may be described and claimed.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: July 21, 2020
    Assignee: Intel Corporation
    Inventor: Wenhua Lin
  • Publication number: 20200174514
    Abstract: Methods, apparatuses, and systems are described herein to compensate for a skew effect that occurs in an optical signal generated in response to an electrical to optical (E/O) conversion of an electrical signal carrying data received from a driver. A skew control device coupled with a driver or a modulator provides a skew to the electric signal prior to E/O conversion to compensate for the skew effect. The skew may be provided by a reverse-biased p-n junction diode. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: February 3, 2020
    Publication date: June 4, 2020
    Inventors: Siamak Amiralizadeh Asl, Syed S. Islam, Wenhua Lin
  • Patent number: 10591671
    Abstract: Some embodiments of the present disclosure describe an apparatus for III/V-Si taper coupling, including a III/V-Si taper coupler with one end to receive a laser beam where the one end has at least one surface at a non-perpendicular angle with respect to a direction of the laser beam, and where the at least one surface forms one or more tips at the one end of the III/V-Si taper coupler. The one end is positioned so that the one or more tips are outside the laser beam to reduce reflection of laser beam away from the one end of the III/V-Si taper coupler.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: March 17, 2020
    Assignee: Intel Corporation
    Inventors: Wenhua Lin, Kimchau N. Nguyen
  • Publication number: 20190158209
    Abstract: There is disclosed in one example a fiberoptic communication circuit for wavelength division multiplexing (WDM) communication, including: an incoming waveguide to receive an incoming WDM laser pulse; an intermediate slab including a demultiplexer circuit to isolate n discrete modes from the incoming WDM laser pulse; n outgoing waveguides to receive the n discrete modes, the outgoing waveguides including fully-etched rib-to-channel waveguides; and an array of n photodetectors to detect the n discrete modes.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 23, 2019
    Applicant: Intel Corporation
    Inventors: Wenhua Lin, Judson Douglas Ryckman, Ling Liao, Kelly Christopher Magruder, Harel Frish, Assia Barkai, Han-din Liu, Yimin Kang
  • Publication number: 20190137691
    Abstract: Embodiments of the present disclosure are directed toward techniques and configurations for an optical device having a multiplexer and/or demultiplexer with an input and/or output optical waveguide including one or more waveguide segments tapered according to a non-linear function such as a curve. In embodiments, the one or more waveguide segments is tapered according to, e.g., a quadratic function, a parabolic function, or an exponential function. In accordance with some embodiments, the tapered segment assists in spatially dispersing the propagating light along a substantially uniform phase wavefront at a mirror that includes an echelle grating surface that is shaped to receive/reflect the light at the substantially uniform phase wavefront. In embodiments, the one or more waveguide segments is tapered according to a curve to receive a portion of light from the substantially uniform phase wavefront at the echelle grating surface. Additional embodiments may be described and claimed.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 9, 2019
    Inventor: Wenhua LIN
  • Publication number: 20190137688
    Abstract: Some embodiments of the present disclosure describe an apparatus for III/V-Si taper coupling, including a III/V-Si taper coupler with one end to receive a laser beam where the one end has at least one surface at a non-perpendicular angle with respect to a direction of the laser beam, and where the at least one surface forms one or more tips at the one end of the III/V-Si taper coupler. The one end is positioned so that the one or more tips are outside the laser beam to reduce reflection of laser beam away from the one end of the III/V-Si taper coupler.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 9, 2019
    Inventors: Wenhua Lin, Kimchau N. Nguyen
  • Publication number: 20190129095
    Abstract: Embodiments may relate to a silicon photonic chip, and particularly a back absorber within the silicon photonic chip. The back absorber may include a substrate material with a slab portion that includes a doped portion of the substrate material. The back absorber may be positioned at the backside of a laser that is configured to project light along a waveguide of the silicon photonic chip. Other embodiments may be described or claimed.
    Type: Application
    Filed: December 11, 2018
    Publication date: May 2, 2019
    Applicant: Intel Corporation
    Inventors: Kimchau Nhu Nguyen, George A. Ghiurcan, Yoel Chetrit, Jeffrey B. Driscoll, Richard Jones, Harel Frish, Reece A. Defrees, Wenhua Lin, Jung S. Park
  • Patent number: 10197737
    Abstract: Embodiments of the present disclosure are directed toward an optical apparatus that includes a semiconductor layer to propagate light from at least one light source. The optical apparatus may further include a curved echelle grating with a plurality of grating teeth, the echelle grating at an outer side of the semiconductor layer. The curved echelle grating may include a plurality of grating teeth, and a grating tooth of the plurality of grating teeth may have a grating facet and a shadow facet. A shadow facet may have an angle of grating greater than 0 degrees with respect to a normal of a curve of the curved echelle grating. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: February 5, 2019
    Assignee: Intel Corporation
    Inventor: Wenhua Lin
  • Publication number: 20180364418
    Abstract: Embodiments of the present disclosure are directed toward an optical apparatus that includes a semiconductor layer to propagate light from at least one light source. The optical apparatus may further include a curved echelle grating with a plurality of grating teeth, the echelle grating at an outer side of the semiconductor layer. The curved echelle grating may include a plurality of grating teeth, and a grating tooth of the plurality of grating teeth may have a grating facet and a shadow facet. A shadow facet may have an angle of grating greater than 0 degrees with respect to a normal of a curve of the curved echelle grating. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 28, 2017
    Publication date: December 20, 2018
    Inventor: Wenhua Lin
  • Patent number: 9395494
    Abstract: Embodiments of the present disclosure are directed toward techniques and configurations for an optical device having a semiconductor layer to propagate light and a mirror disposed inside the semiconductor layer and having echelle grating reflective surface to substantially totally internally reflect the propagating light inputted by one or more input waveguides, to be received by one or more output waveguides. The waveguides may be disposed in the semiconductor layer under a determined angle relative to the mirror reflective surface. The determined angle may be equal to or greater than a total internal reflection angle corresponding to the interface, to provide substantially total internal reflection of light by the mirror. The mirror may be formed by an interface of the semiconductor layer comprising the mirror reflective surface and another medium filling the mirror, such as a dielectric. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: July 19, 2016
    Assignee: Intel Corporation
    Inventors: Mahesh Krishnamurthi, I-Wei Hsieh, Haisheng Rong, Oshrit Harel, Harel Frish, Assia Barkai, Wenhua Lin
  • Publication number: 20160103282
    Abstract: Embodiments of the present disclosure are directed toward techniques and configurations for an optical device having a semiconductor layer to propagate light and a mirror disposed inside the semiconductor layer and having echelle grating reflective surface to substantially totally internally reflect the propagating light inputted by one or more input waveguides, to be received by one or more output waveguides. The waveguides may be disposed in the semiconductor layer under a determined angle relative to the mirror reflective surface. The determined angle may be equal to or greater than a total internal reflection angle corresponding to the interface, to provide substantially total internal reflection of light by the mirror. The mirror may be formed by an interface of the semiconductor layer comprising the mirror reflective surface and another medium filling the mirror, such as a dielectric. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 16, 2015
    Publication date: April 14, 2016
    Inventors: MAHESH KRISHNAMURTHI, I-WEI HSIEH, HAISHENG RONG, OSHRIT HAREL, HAREL FRISH, ASSIA BARKAI, WENHUA LIN
  • Patent number: 9250388
    Abstract: Embodiments of the present disclosure are directed toward techniques and configurations for an optical device having a semiconductor layer to propagate light and a mirror disposed inside the semiconductor layer and having echelle grating reflective surface to substantially totally internally reflect the propagating light inputted by one or more input waveguides, to be received by one or more output waveguides. The waveguides may be disposed in the semiconductor layer under a determined angle relative to the mirror reflective surface. The determined angle may be equal to or greater than a total internal reflection angle corresponding to the interface, to provide substantially total internal reflection of light by the mirror. The mirror may be formed by an interface of the semiconductor layer comprising the mirror reflective surface and another medium filling the mirror, such as a dielectric. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: February 2, 2016
    Assignee: INTEL CORPORATION
    Inventors: Mahesh Krishnamurthi, I-Wei Hsieh, Haisheng Rong, Oshrit Harel, Harel Frish, Assia Barkai, Wenhua Lin
  • Publication number: 20160018595
    Abstract: Embodiments of the present disclosure are directed toward techniques and configurations for an optical device having a semiconductor layer to propagate light and a mirror disposed inside the semiconductor layer and having echelle grating reflective surface to substantially totally internally reflect the propagating light inputted by one or more input waveguides, to be received by one or more output waveguides. The waveguides may be disposed in the semiconductor layer under a determined angle relative to the mirror reflective surface. The determined angle may be equal to or greater than a total internal reflection angle corresponding to the interface, to provide substantially total internal reflection of light by the mirror. The mirror may be formed by an interface of the semiconductor layer comprising the mirror reflective surface and another medium filling the mirror, such as a dielectric. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: July 17, 2014
    Publication date: January 21, 2016
    Inventors: MAHESH KRISHNAMURTHI, I-WEI HSIEH, HAISHENG RONG, OSHRIT HAREL, HAREL FRISH, ASSIA BARKAI, WENHUA LIN
  • Patent number: 8137572
    Abstract: A method of making a planar lightwave circuit (PLC) waveguide capable of being integrated with a surface-mounted component is presented. The method entails etching a silicon substrate to form a slanted wall, forming a nonreflective waveguide portion on the silicon substrate, and depositing a reflective layer on the slanted wall. Light travels through the nonreflective waveguide portion in substantially a first direction, and the light from the nonreflective waveguide portion strikes the reflective layer to be redirected in a second direction. The second direction may be the direction toward the surface-mounted component. A PLC waveguide device made with the above method is also presented.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: March 20, 2012
    Assignee: Enablence USA Components Inc.
    Inventors: HongZhen Wei, Ray Liang, Wenhua Lin, Ted Chen, Jacob Sun
  • Patent number: 7933478
    Abstract: A method of making a planar lightwave circuit (PLC) waveguide capable of being integrated with a surface-mounted component is presented. The method entails etching a silicon substrate to form a slanted wall, forming a nonreflective waveguide portion on the silicon substrate, and depositing a reflective layer on the slanted wall. Light travels through the nonreflective waveguide portion in substantially a first direction, and the light from the nonreflective waveguide portion strikes the reflective layer to be redirected in a second direction. The second direction may be the direction toward the surface-mounted component. A PLC waveguide device made with the above method is also presented.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: April 26, 2011
    Assignee: Enablence USA Components Inc.
    Inventors: HongZhen Wei, Ray Liang, Wenhua Lin, Ted Chen, Jacob Sun
  • Patent number: 7840104
    Abstract: A multiplexing AWG device capable of producing an ultra-wideband, low ripple, flat-top signal is presented. The AWG device includes an AWG unit and a two-section waveguide coupled to the AWG unit. The two-section waveguide has a first section and a second section. The first section produces a signal having a double-peak field profile and has a first input end and a first output end. The second section reduces the phase variation of the signal having the double-peak field profile exiting the first section. The second section has a second input end that is coupled to the first output end. For example, the first section may be a parabolic tapered waveguide and the second section may be a rectangular waveguide.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: November 23, 2010
    Assignee: Enablence USA Components, Inc.
    Inventors: Saurav Das, Boris Grek, Wenhua Lin
  • Patent number: 7805037
    Abstract: The multiplexer includes multi-mode waveguides positioned on a base such that a plurality of the waveguides serve as input waveguides and one or more of the waveguides serve as an output waveguide. The waveguides intersect one another such that light signals traveling along a plurality of the input waveguides are combined onto an output waveguide. At least a portion of the input waveguides including a taper configured to taper the width of a light signal traveling along the input waveguide toward the output waveguide.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: September 28, 2010
    Assignee: Kotura, Inc.
    Inventors: Frederik Marcel Van Der Vliet, Joan Fong, Dazeng Feng, Wenhua Lin
  • Publication number: 20100025361
    Abstract: A method of making a planar lightwave circuit (PLC) waveguide capable of being integrated with a surface-mounted component is presented. The method entails etching a silicon substrate to form a slanted wall, forming a nonreflective waveguide portion on the silicon substrate, and depositing a reflective layer on the slanted wall. Light travels through the nonreflective waveguide portion in substantially a first direction, and the light from the nonreflective waveguide portion strikes the reflective layer to be redirected in a second direction. The second direction may be the direction toward the surface-mounted component. A PLC waveguide device made with the above method is also presented.
    Type: Application
    Filed: October 12, 2009
    Publication date: February 4, 2010
    Inventors: HongZhen WEI, Ray Liang, Wenhua Lin, Ted Chen, Jacob Sun
  • Publication number: 20090214170
    Abstract: A method of making a planar lightwave circuit (PLC) waveguide capable of being integrated with a surface-mounted component is presented. The method entails etching a silicon substrate to form a slanted wall, forming a nonreflective waveguide portion on the silicon substrate, and depositing a reflective layer on the slanted wall. Light travels through the nonreflective waveguide portion in substantially a first direction, and the light from the nonreflective waveguide portion strikes the reflective layer to be redirected in a second direction. The second direction may be the direction toward the surface-mounted component. A PLC waveguide device made with the above method is also presented.
    Type: Application
    Filed: August 27, 2008
    Publication date: August 27, 2009
    Inventors: HongZhen Wei, Ray Liang, Wenhua Lin, Ted Chen, Jacob Sun
  • Publication number: 20090016679
    Abstract: A multiplexing AWG device capable of producing an ultra-wideband, low ripple, flat-top signal is presented. The AWG device includes an AWG unit and a two-section waveguide coupled to the AWG unit. The two-section waveguide has a first section and a second section. The first section produces a signal having a double-peak field profile and has a first input end and a first output end. The second section reduces the phase variation of the signal having the double-peak field profile exiting the first section. The second section has a second input end that is coupled to the first output end. For example, the first section may be a parabolic tapered waveguide and the second section may be a rectangular waveguide.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 15, 2009
    Inventors: Saurav Das, Boris Grek, Wenhua Lin