Patents by Inventor Wenjun Xu

Wenjun Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200268619
    Abstract: A suncare formulation comprising: a dermatologically acceptable organic carrier; a UV radiation absorbing agent; and an SPF booster; wherein the SPF booster comprises a multistage polymeric particle having a core comprising polymerized units of a monoethylenically unsaturated carboxylic acid core monomer and a non-ionic ethylenically unsaturated core monomer; an inner shell comprising polymerized units of a non-ionic ethylenically unsaturated inner shell monomer; a monoethylenically unsaturated carboxylic acid inner shell monomer and an aliphatic inner shell monomer; an outer shell comprising polymerized units of a non-ionic ethylenically unsaturated outer shell monomer; an aliphatic outer shell monomer; a monoethylenically unsaturated non-carboxylic acid outer shell monomer and an ethylenically unsaturated surfactant outer shell monomer; wherein the core, when dry, contains a void; wherein the multistage polymeric particle has an average particle size, when dry, of 50 to 1,000 nm.
    Type: Application
    Filed: June 28, 2018
    Publication date: August 27, 2020
    Inventors: Wenjun Xu, Fanwen Zeng, Benjamin Yezer, Liang Chen, Dale C. Schmidt, Inna Shulman
  • Patent number: 10677961
    Abstract: A method for optimizing perforation parameters to maintain uniform fracture growth in multi-stage hydraulic fracturing of horizontal well and device therefor are provided. The method includes steps of: S1: collecting the geological and engineering parameters of the targeted pay zone, and estimating the net inlet pressure of fractures within the targeted fracturing stage of horizontal well; S2: calculating the perforation friction coefficient required for maintaining the uniform fracture growth in multi-stage hydraulic fracturing of horizontal well; S3: calculating the perforation characteristic parameter; and S4: determining the optimized perforation parameters. The method considers the stress heterogeneity, the stress shadowing and the perforation erosion in the process of dynamic hydraulic fracturing propagation, and also the influence of perforation erosion.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: June 9, 2020
    Assignee: SOUTHWEST PETROLEUM UNIVERSITY
    Inventors: Xiyu Chen, Jinzhou Zhao, Yongming Li, Youshi Jiang, Wenjun Xu, Dongyu Fu
  • Patent number: 10627543
    Abstract: The invention provides a method for predicting a reservoir reform volume after vertical well volume fracturing of a low-permeability oil/gas reservoir. The method sequentially includes the following steps: (1) calculating an induced stress produced by a hydraulic fracture in a three-dimensional space; (2) calculating a stratum pore pressure obtained after leak-off of fracturing fluid; (3) calculating a stratum pore elastic stress obtained after the leak-off of the fracturing fluid; (4) overlapping the stress fields obtained in the step (1), (2) and (3) with an original crustal stress field to obtain a new crustal stress field, and calculating the magnitude and direction of the overlapped three-direction effective principal stress in the reservoir space; (5) calculating an open fracturing determination coefficient M of a natural fracture in the reservoir space and a shear fracturing area determination coefficient S of the natural fracture.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: April 21, 2020
    Assignee: SOUTHWEST PETROLEUM UNIVERSITY
    Inventors: Yongming Li, Wenjun Xu, Jinzhou Zhao, Youshi Jiang, Liehui Zhang
  • Publication number: 20190377101
    Abstract: The invention provides a method for predicting a reservoir reform volume after vertical well volume fracturing of a low-permeability oil/gas reservoir. The method sequentially includes the following steps: (1) calculating an induced stress produced by a hydraulic fracture in a three-dimensional space; (2) calculating a stratum pore pressure obtained after leak-off of fracturing fluid; (3) calculating a stratum pore elastic stress obtained after the leak-off of the fracturing fluid; (4) overlapping the stress fields obtained in the step (1), (2) and (3) with an original crustal stress field to obtain a new crustal stress field, and calculating the magnitude and direction of the overlapped three-direction effective principal stress in the reservoir space; (5) calculating an open fracturing determination coefficient M of a natural fracture in the reservoir space and a shear fracturing area determination coefficient S of the natural fracture.
    Type: Application
    Filed: April 28, 2017
    Publication date: December 12, 2019
    Applicant: SOUTHWEST PETROLEUM UNIVERSITY
    Inventors: Yongming LI, Wenjun XU, Jinzhou ZHAO, Youshi JIANG, Liehui ZHANG
  • Publication number: 20190343734
    Abstract: Provided are personal care compositions comprising a core polymer, at least one inner shell polymer, and an outer shell polymer providing SPF boosting and opacity, wherein the core polymer comprises polymerized units derived from monoethylenically unsaturated monomers containing at least one carboxylic acid group and non-ionic ethylenically unsaturated monomers, and the inner and outer shell polymers comprise polymerized units derived from non-ionic ethylenically unsaturated monomers and aliphatic monomers selected from the group consisting of allyl acrylate, allyl methacrylate, and mixtures thereof.
    Type: Application
    Filed: January 25, 2018
    Publication date: November 14, 2019
    Inventors: Inna Shulman, Wenjun Xu, Fanwen Zeng
  • Publication number: 20190133913
    Abstract: Provided are personal care compositions comprising a core polymer and at least one shell polymer provide SPF boosting and an improved odor profile, wherein the core polymer comprises polymerized units derived from monoethylenically unsaturated monomers containing at least one carboxylic acid group and non-ionic ethylenically unsaturated monomers, and the shell polymer comprises polymerized units derived from non-ionic ethylenically unsaturated monomers and aliphatic monomers selected from the group consisting of tri(meth)acrylates and (meth)acrylic monomers having mixed ethylenic functionality.
    Type: Application
    Filed: August 3, 2016
    Publication date: May 9, 2019
    Inventors: Inna Shulman, Wenjun Xu, Fanwen Zeng
  • Patent number: 10086494
    Abstract: A chemical mechanical polishing pad for polishing a semiconductor substrate is provided containing a polishing layer that comprises a polyurethane reaction product of a reaction mixture comprising a curative and a polyisocyanate prepolymer having an unreacted isocyanate (NCO) concentration of from 8.3 to 9.8 wt. % and formed from a polyol blend of polypropylene glycol (PPG) and polytetramethylene ether glycol (PTMEG) and containing a hydrophilic portion of polyethylene glycol or ethylene oxide repeat units, a toluene diisocyanate, and one or more isocyanate extenders, wherein the polyurethane reaction product exhibits a wet Shore D hardness of from 10 to 20% less than the Shore D hardness of the dry polyurethane reaction product.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: October 2, 2018
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Jonathan G. Weis, George C. Jacob, Bhawesh Kumar, Sarah E. Mastroianni, Wenjun Xu, Nan-Rong Chiou, Mohammad T. Islam
  • Publication number: 20180071888
    Abstract: A chemical mechanical polishing pad for polishing a semiconductor substrate is provided containing a polishing layer that comprises a polyurethane reaction product of a reaction mixture comprising a curative and a polyisocyanate prepolymer having an unreacted isocyanate (NCO) concentration of from 8.3 to 9.8 wt. % and formed from a polyol blend of polypropylene glycol (PPG) and polytetramethylene ether glycol (PTMEG) and containing a hydrophilic portion of polyethylene glycol or ethylene oxide repeat units, a toluene diisocyanate, and one or more isocyanate extenders, wherein the polyurethane reaction product exhibits a wet Shore D hardness of from 10 to 20% less than the Shore D hardness of the dry polyurethane reaction product.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 15, 2018
    Inventors: Jonathan G. Weis, George C. Jacob, Bhawesh Kumar, Sarah E. Mastroianni, Wenjun Xu, Nan-Rong Chiou, Mohammad T. Islam