Patents by Inventor Wenping Jiang

Wenping Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11919091
    Abstract: A coating for carbide substrates employs a nanostructured coating in conjunction with a non-nanostructured coating. The nanostructured coating is produced by the addition of a refining agent flow, particular hydrogen chloride gas, during deposition, and may be produced as multiple individual titanium and titanium-based nanostructured layers varying functional materials in a series. The combination of a nanostructured coating and non-nanostructured coating is believed to produce a cutting tool insert that exhibits longer life. Pre-treating the substrate with a mixture of compressed air and abrasive medium prior to coating the substrate and post-treating the coated substrate with a mixture of water and abrasive medium after the coating process is believed to further enhance the wear resistance and usage life of the cutting tool.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: March 5, 2024
    Assignee: P & S Global Holdings LLC
    Inventor: Wenping Jiang
  • Publication number: 20220380677
    Abstract: This invention relates to nanohybrid compositions derived from surface activation of halogenated and/or non-halogenated flame retardant (FR) materials with nanostructured copper and/or its oxides. The present disclosure also relates to polymer compositions manufactured by incorporating and reinforcing polymers/copolymers with nanohybrid compositions as flame retardant additives for enhanced fire resistance, smoke suppression, and antimicrobial capabilities. In one or more embodiments, the polymers and article of manufacture to which the particles are applied may have on or more of the following attributes: temperature adaptable flame retardant behavior, Enhanced suppression of flammable gas and smoke, catalysis of charring or thermal oxidative promotion of charring through the oxides of metals, enhanced heat sink behavior, and/or antimicrobial behavior.
    Type: Application
    Filed: May 14, 2021
    Publication date: December 1, 2022
    Applicant: P & S Global Holdings, LLC
    Inventors: Parash KALITA, Wenping JIANG
  • Patent number: 11267053
    Abstract: A coating for carbide substrates employs a nanostructured coating in conjunction with a non-nanostructured coating. The nanostructured coating is produced by the addition of a refining agent flow, particular hydrogen chloride gas, during deposition, and may be produced as multiple individual nanostructured layers varying functional materials in a series. The combination of a nanostructured coating and non-nanostructured coating is believed to produce a cutting tool insert that exhibits longer life. Pre-treating the substrate with a mixture of compressed air and abrasive medium prior to coating the substrate and post-treating the coated substrate with a mixture of water and abrasive medium after the coating process is believed to further enhance the wear resistance and usage life of the cutting tool.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: March 8, 2022
    Assignee: P&S GLOBAL HOLDINGS LLC
    Inventors: Wenping Jiang, Mike Kimmel, Ajay P. Malshe
  • Patent number: 10752997
    Abstract: Ultrasonic spray deposition (USD) used to deposit a base layer on the substrate, followed by chemical vapor infiltration (CVI) to introduce a binder phase that creates a composite coating with good adherence of the binder to the initial phase particles and adherence of the composite coating to the substrate, is disclosed. We have used this process to create coatings consisting of cubic boron nitride (cBN), deposited using USD, and titanium nitride (TiN) applied using CVI in various embodiments. This process can be used with many materials not usable with other processes, including nitrides, carbides, carbonitrides, borides, oxides, sulphides and silicides. In addition, other binding or post-deposition treatment processes can be applied as alternatives to CVI, depending on the substrate, the coating materials, and the application requirements of the coating. Coatings can be applied to a variety of substrates including those with complex geometries.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: August 25, 2020
    Assignee: P&S Global Holdings LLC
    Inventors: Wenping Jiang, Justin B. Lowrey, Robert T. Fink
  • Publication number: 20200238390
    Abstract: A coating for carbide substrates employs a nanostructured coating in conjunction with a non-nanostructured coating. The nanostructured coating is produced by the addition of a refining agent flow, particular hydrogen chloride gas, during deposition, and may be produced as multiple individual titanium and titanium-based nanostructured layers varying functional materials in a series. The combination of a nanostructured coating and non-nanostructured coating is believed to produce a cutting tool insert that exhibits longer life. Pre-treating the substrate with a mixture of compressed air and abrasive medium prior to coating the substrate and post-treating the coated substrate with a mixture of water and abrasive medium after the coating process is believed to further enhance the wear resistance and usage life of the cutting tool.
    Type: Application
    Filed: April 15, 2020
    Publication date: July 30, 2020
    Inventor: Wenping Jiang
  • Patent number: 10639768
    Abstract: A physical configuration of multiple-layer coatings formed with at least one layer of coating containing cubic born nitride (cBN) particles with one or more layers in composite form containing cBN particles may have a thickness of each individual layer as thin as in the nanometer range, or as thick as in the range of a few microns and even up to tens of microns. The chemistry of the composite layer consists of any individual phase of (a) nitrides such as titanium nitride (TiN), titanium carbonitride (TiCN), and hafnium nitride (HfN); (b) carbides such as titanium carbide (TiC); and (c) oxides such as aluminum oxide (AI2O3) or any combination of the above phases, in addition to cBN particles. The coating or film can be stand-alone or on a substrate.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: May 5, 2020
    Assignee: P&S Global Holdings LLC
    Inventors: Wenping Jiang, Ajay P. Malshe
  • Patent number: 10155325
    Abstract: Open-architecture constituents, such as wood fibers, are coated with an intercalated functional material and bound together to form a solid product, such as a plank. Applications for this material include decking, fencing, and the like. The functional material is applied prior to forming the solid product, either as a coating on each fiber or inserted in a fiber or fiber cluster. As the constituents, such as fibers, wear during use of the product, the functional material is released to provide continual protection of the product, such as UV resistance and fungal resistance.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: December 18, 2018
    Assignee: NanoMech, Inc.
    Inventors: Parash Kalita, Wenping Jiang
  • Patent number: 9821435
    Abstract: A method for forming a stand-alone wafer or a coating on a substrate uses a composite of cubic boron nitride (cBN) particles and other materials, such as nitrides, carbides, carbonitrides, borides, oxides, and metallic phase materials. The wafer or coating may be formed of a thickness up to about 1000 microns for improved wear life. The density of material within the wafer or coating may be varied according to desired parameters, and a gradient of particle sizes for the cBN may be presented across the thickness of the material.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: November 21, 2017
    Assignee: NanoMech, Inc.
    Inventors: Wenping Jiang, Ajay P. Malshe
  • Patent number: 9682170
    Abstract: A high-strength coating for dental and orthopedic implants utilizing hydroxyapatite (HAp) nanoparticles provides for a high level of osseointegration through a range of surface pore sizes in the micro- to nanoscale. Zinc oxide (ZnO) nanoparticles may be incorporated with the HAp nanoparticles to form a composite coating material, with ZnO providing infection resistance due to its inherent antimicrobial properties. A textured surface, consisting of “islands” of roughly square coating structures measuring about 250 ?m on a side, with spacing of 50-100 ?m therebetween, may further promote the osseointegration and antimicrobial properties of the implant coating.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: June 20, 2017
    Assignees: The Board of Trustees of the University of Arkansas, NanoMech, Inc.
    Inventors: Ajay P. Malshe, Wenping Jiang
  • Publication number: 20170165759
    Abstract: A coating for carbide substrates employs a nanostructured coating in conjunction with a non-nanostructured coating. The nanostructured coating is produced by the addition of a refining agent flow, particular hydrogen chloride gas, during deposition, and may be produced as multiple individual nanostructured layers varying functional materials in a series. The combination of a nanostructured coating and non-nanostructured coating is believed to produce a cutting tool insert that exhibits longer life. Pre-treating the substrate with a mixture of compressed air and abrasive medium prior to coating the substrate and post-treating the coated substrate with a mixture of water and abrasive medium after the coating process is believed to further enhance the wear resistance and usage life of the cutting tool.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 15, 2017
    Inventors: Wenping Jiang, Mike Kimmel, Ajay P. Malshe
  • Patent number: 9662712
    Abstract: An adherent coating for carbide and ceramic substrates employs a thin layer between the substrate and a subsequent layer or layers. The thin layer may be employed without thermal cracking due to heat during use, such as for the insert of a cutting tool, because the upper layer or layers provide a gradual transition of material properties to a harder, less thermally conductive material on the outermost layer. A particular arrangement of layers on the carbide or ceramic substrate may be, from innermost to outermost layer, hafnium nitride, titanium carbide, aluminum oxide, and titanium nitride.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: May 30, 2017
    Assignee: NanoMech, Inc.
    Inventors: Wenping Jiang, Mike Kimmel, Ajay P. Malshe, Brett McAfee
  • Patent number: 9649746
    Abstract: A cutting tool formed by a coating layer on a substrate has cutting edges that feature serrations. The linear dimensions of the serrations may vary from a few nanometers up to 10 microns. The serrations result in a smoother cut edge on the workpiece, particularly when the workpiece is formed of certain materials that are seen as particularly difficult to cut, such as hardened steels.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: May 16, 2017
    Assignee: NanoMech, Inc.
    Inventors: Ajay P. Malshe, Wenping Jiang
  • Publication number: 20140308511
    Abstract: A physical configuration of multiple-layer coatings formed with at least one layer of coating containing cubic born nitride (cBN) particles with one or more layers in composite form containing cBN particles may have a thickness of each individual layer as thin as in the nanometer range, or as thick as in the range of a few microns and even up to tens of microns. The chemistry of the composite layer consists of any individual phase of (a) nitrides such as titanium nitride (TiN), titanium carbonitride (TiCN), and hafnium nitride (HfN); (b) carbides such as titanium carbide (TiC); and (c) oxides such as aluminum oxide (Al2O3) or any combination of the above phases, in addition to cBN particles. The coating or film can be stand-alone or on a substrate.
    Type: Application
    Filed: May 29, 2012
    Publication date: October 16, 2014
    Applicants: NanoMech, Inc., The Board of Trustees of the university of Arkansas
    Inventors: Wenping Jiang, Ajay P. Malshe
  • Publication number: 20140215925
    Abstract: A method for forming a stand-alone wafer or a coating on a substrate uses a composite of cubic boron nitride (cBN) particles and other materials, such as nitrides, carbides, carbonitrides, borides, oxides, and metallic phase materials. The wafer or coating may be formed of a thickness up to about 1000 microns for improved wear life. The density of material within the wafer or coating may be varied according to desired parameters, and a gradient of particle sizes for the cBN may be presented across the thickness of the material.
    Type: Application
    Filed: May 29, 2012
    Publication date: August 7, 2014
    Applicant: NanoMech, Inc.
    Inventors: Wenping Jiang, Ajay P. Malshe
  • Publication number: 20140212232
    Abstract: A cutting tool formed by a coating layer on a substrate has cutting edges that feature serrations. The linear dimensions of the serrations may vary from a few nanometers up to 10 microns. The serrations result in a smoother cut edge on the workpiece, particularly when the workpiece is formed of certain materials that are seen as particularly difficult to cut, such as hardened steels.
    Type: Application
    Filed: May 29, 2012
    Publication date: July 31, 2014
    Applicant: NanoMech, Inc.
    Inventors: Ajay P. Malshe, Wenping Jiang
  • Publication number: 20140178629
    Abstract: Open-architecture constituents, such as wood fibers, are coated with an intercalated functional material and bound together to form a solid product, such as a plank. Applications for this material include decking, fencing, and the like. The functional material is applied prior to forming the solid product, either as a coating on each fiber or inserted in a fiber or fiber cluster. As the constituents, such as fibers, wear during use of the product, the functional material is released to provide continual protection of the product, such as UV resistance and fungal resistance.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 26, 2014
    Inventors: Parash Kalita, Wenping Jiang
  • Patent number: 8758863
    Abstract: Methods for creating coatings composed of a single material or a composite of multiple materials, beginning with ESC to deposit the base layer and then using other methods for the binding step beyond CVI. Also, for certain materials and applications, some pre-processing or pre-treatment of the coating materials is necessary prior to deposition in order to achieve a satisfactory coating. This application discloses methods for pre-deposition treatment of materials prior to ESC deposition. It also discloses methods for post-processing that provide additional functionality or performance characteristics of the coating. Finally, this application discloses certain apparatus and equipment for accomplishing the methods described herein.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: June 24, 2014
    Assignees: The Board of Trustees of the University of Arkansas, NanoMech, Inc.
    Inventors: Ajay P. Malshe, Wenping Jiang, Justin B. Lowrey
  • Publication number: 20130216806
    Abstract: An adherent coating for carbide and ceramic substrates employs a thin layer between the substrate and a subsequent layer or layers. The thin layer may be employed without thermal cracking due to heat during use, such as for the insert of a cutting tool, because the upper layer or layers provide a gradual transition of material properties to a harder, less thermally conductive material on the outermost layer. A particular arrangement of layers on the carbide or ceramic substrate may be, from innermost to outermost layer, hafnium nitride, titanium carbide, aluminum oxide, and titanium nitride.
    Type: Application
    Filed: March 18, 2013
    Publication date: August 22, 2013
    Inventors: Wenping Jiang, Mike Kimmel, Ajay P. Malshe, Brett McAfee
  • Publication number: 20130216777
    Abstract: A coating for carbide substrates to produce cutting tool inserts employs a lower nanostructured layer in conjunction with a non-nanostructured layer. The nanostructured layer is produced by the addition of a refining agent flow, particular hydrogen chloride gas, during deposition. The combination of a nanostructured layer and non-nanostructured layer of coatings is believed to produce a cutting tool insert that exhibits longer life, particularly in conjunction with particularly difficult cutting applications such as the cutting of hardened steel with severe interruptions.
    Type: Application
    Filed: April 19, 2012
    Publication date: August 22, 2013
    Inventors: Wenping Jiang, Mike Kimmel, Ajay P. Malshe
  • Patent number: 8420237
    Abstract: An adherent coating for carbide and ceramic substrates employs a thin layer of hafnium nitride (HfN) between the substrate and a subsequent layer or layers. The thin layer may be employed without thermal cracking due to heat during use, such as for the insert of a cutting tool, because the upper layer or layers provide a gradual transition of material properties to a harder, less thermally conductive material on the outermost layer. A particular arrangement of layers on the carbide or ceramic substrate and hafnium nitride layer may be, from innermost to outermost layer, titanium carbide, aluminum oxide, and titanium nitride.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: April 16, 2013
    Inventors: Wenping Jiang, Mike Kimmel, Ajay P. Malshe, Brett McAfee