Patents by Inventor Wenshan Cai

Wenshan Cai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9165694
    Abstract: Aspects of the present disclosure are directed to apparatuses and methods involving nanowires having junctions therebetween. As consistent with one or more embodiments, an apparatus includes first and second sets of nanowires, in which the second set overlaps the first set. The apparatus further includes a plurality of nanowire joining recrystallization junctions, each junction including material from a nanowire of the first set that is recrystallized into an overlapping nanowire of the second set.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: October 20, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Erik C. Garnett, Mark L. Brongersma, Yi Cui, Michael D. McGehee, Mark Greyson Christoforo, Wenshan Cai
  • Publication number: 20140090870
    Abstract: Aspects of the present disclosure are directed to apparatuses and methods involving nanowires having junctions therebetween. As consistent with one or more embodiments, an apparatus includes first and second sets of nanowires, in which the second set overlaps the first set. The apparatus further includes a plurality of nanowire joining recrystallization junctions, each junction including material from a nanowire of the first set that is recrystallized into an overlapping nanowire of the second set.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 3, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Erik C. Garnett, Mark L. Brongersma, Yi Cui, Michael D. McGehee, Mark Greyson Christoforo, Wenshan Cai
  • Patent number: 8599489
    Abstract: A tunable super-lens (TSL) for nanoscale optical sensing and imaging of bio-molecules and nano-manufacturing utilizes negative-index materials (NIMs) that operate in the visible or near infrared light. The NIMs can create a lens that will perform sub-wavelength imaging, enhanced resolution imaging, or flat lens imaging. This new TSL covers two different operation scales. For short distances between the object and its image, a near-field super-lens (NFSL) can create or enhance images of objects located at distances much less than the wavelength of light. For the far-zone, negative values are necessary for both the permittivity ? a permeability ?. While well-structured periodic meta-materials, which require delicate design and precise fabrication, can be used, metal-dielectric composites are also candidates for NIMs in the optical range. The negative-refraction in the composite films can be made by using frequency-selective photomodification.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: December 3, 2013
    Assignee: Purdue Research Foundation
    Inventors: Vladimir M. Shalaev, Alexander P. Kildishev, Vladimir P. Drachev, Wenshan Cai
  • Patent number: 8488247
    Abstract: An object is disposed such that the apparatus is between the object and an observer. The appearance of the object is altered and, in the limit, the object cannot be observed, and the background appears unobstructed. The apparatus is formed of a metamaterial where the properties of the metamaterial are varied as a function of distance from the interfaces. The metamaterial may be fabricated as a composite material having a dielectric component and inclusions of particles of sub-wavelength size, and may also include a gain medium.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: July 16, 2013
    Assignee: Purdue Research Foundation
    Inventors: Wenshan Cai, Vladimir M. Shalaev, Uday K. Chettiar, Alexander V. Kildishev
  • Publication number: 20100134898
    Abstract: A tunable super-lens (TSL) for nanoscale optical sensing and imaging of bio-molecules and nano-manufacturing utilizes negative-index materials (NIMs) that operate in the visible or near infrared light. The NIMs can create a lens that will perform sub-wavelength imaging, enhanced resolution imaging, or flat lens imaging. This new TSL covers two different operation scales. For short distances between the object and its image, a near-field super-lens (NFSL) can create or enhance images of objects located at distances much less than the wavelength of light. For the far-zone, negative values are necessary for both the permittivity ? a permeability ?. While well-structured periodic meta-materials, which require delicate design and precise fabrication, can be used, metal-dielectric composites are also candidates for NIMs in the optical range. The negative-refraction in the composite films can be made by using frequency-selective photomodification.
    Type: Application
    Filed: February 26, 2008
    Publication date: June 3, 2010
    Applicant: PURDUE RESEARCH FOUNDATION
    Inventors: Vladimir M. Shalaev, Alexander P. Kildishev, Vladimir P. Drachev, Wenshan Cai
  • Publication number: 20100110559
    Abstract: An apparatus and method of cloaking is described. An object to be cloaked is disposed such that the cloaking apparatus is between the object and an observer. The appearance of the object is altered and, in the limit, the object cannot be observed, and the background appears unobstructed. The cloak is formed of a metamaterial where the properties of the metamaterial are varied as a function of distance from the cloak interfaces. The metamaterial may be fabricated as a composite material having a dielectric component and inclusions of particles of sub-wavelength size, and may also include a gain medium.
    Type: Application
    Filed: October 5, 2009
    Publication date: May 6, 2010
    Inventors: Wenshan Cai, Vladimir M. Shalaev, Uday K. Chettiar, Alexander V. Kildishev
  • Publication number: 20080165442
    Abstract: An apparatus and method of cloaking is described. An object to be cloaked is disposed such that the cloaking apparatus is between the object and an observer. The appearance of the object is altered and, in the limit, the object cannot be observed, and the background appears unobstructed. The cloak is formed of a metamaterial where the properties of the metamaterial are varied as a function of distance from the cloak interfaces, and the permittivity is less than unity. The metamaterial may be fabricated as a composite material having a dielectric component and inclusions of particles of sub-wavelength size, so as to have a permeability substantially equal to unity.
    Type: Application
    Filed: November 7, 2007
    Publication date: July 10, 2008
    Inventors: Wenshan Cai, Vladimir M. Shalaev, Uday K. Chettiar, Alexander V. Kildishev