Patents by Inventor Wenshen Wang

Wenshen Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7379672
    Abstract: The present photonic RF generation and distribution system provides a system and method for distributing an RF output signal. The photonic RF distribution system includes two optical sources for generating optical signals. A first optical source (42) is operable to generate a first optical signal having an operating frequency. A second optical source (44) is operable to generate a second optical signal having an operating frequency. A modulator (46) is operable to impress an RF modulation signal on a tapped portion of the first optical signal such that a modulated signal is generated. A first coupler (52) combines the modulated signal with a tapped portion of the second optical signal, thereby forming a combined signal having a difference frequency component. A control photodetector (50) is responsive to the combined signal to generate a tone signal.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: May 27, 2008
    Assignee: Northrop Grumman Corporation
    Inventors: Wenshen Wang, David C. Scott, Thomas Jin-Ming Jung, Joseph Morais
  • Patent number: 7068866
    Abstract: A PIN electro-optical traveling wave modulator (10) including diffraction gratings (34, 36) positioned at opposing sides of an optical waveguide (20) that act to change the propagation pattern of the waveguide (20). The modulator (10) includes an N-type layer (14), a P-type layer (18) and an intrinsic layer (16) acting as the waveguide (20). A metal electrode (26) is in electrical contact with the N-type layer (14), and a metal electrode (30) is in electrical contact with the P-type layer (18). The electrodes (26, 30) define an RF transmission line. An optical wave (22) propagates along the waveguide (20) and interacts with the gratings (34, 36) which slow the optical wave (22) to match its speed to the speed of the RF wave in the transmission line. In one embodiment, the gratings (34, 36) are 2-D gratings formed by vertical holes (38) in the waveguide (20).
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: June 27, 2006
    Assignee: Northrop Grumman Corporation
    Inventors: Wenshen Wang, David C Scott, Elizabeth T Kunkee
  • Publication number: 20050201759
    Abstract: The present photonic RF generation and distribution system provides a system and method for distributing an RF output signal. The photonic RF distribution system includes two optical sources for generating optical signals. A first optical source (42) is operable to generate a first optical signal having an operating frequency. A second optical source (44) is operable to generate a second optical signal having an operating frequency. A modulator (46) is operable to impress an RF modulation signal on a tapped portion of the first optical signal such that a modulated signal is generated. A first coupler (52) combines the modulated signal with a tapped portion of the second optical signal, thereby forming a combined signal having a difference frequency component. A control photodetector (50) is responsive to the combined signal to generate a tone signal.
    Type: Application
    Filed: February 10, 2005
    Publication date: September 15, 2005
    Inventors: Wenshen Wang, David Scott, Thomas Jung, Joseph Morais
  • Patent number: 6933583
    Abstract: A coupled quantum well Mach-Zehnder modulator that employs a push-pull structure to reduce the modulation voltage. The Mach-Zehnder modulator includes a first arm having a first PIN semiconductor device and a second arm having a second PIN semiconductor device. The intrinsic layers of the PIN devices include a coupled quantum well structure to provide an opposite index of refraction change for different DC bias voltages. An RF signal used to modulate the light beam is applied to the two arms in phase and causes the index of refraction in the intrinsic layers of the two PIN devices to change in opposite directions so that a push-pull type drive is achieved without requiring 180° out-of-phase RF drive signal.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: August 23, 2005
    Assignee: Northrop Grumman Corporation
    Inventors: Elizabeth T. Kunkee, David V. Forbes, David C. Scott, Timothy A. Vang, Wenshen Wang
  • Publication number: 20050157368
    Abstract: A Mach-Zehnder modulator that employs quantum dots to provide a push-pull drive operation. The Mach-Zehnder modulator includes a first arm having a first PIN semiconductor device and a second arm having a second PIN semiconductor device, where the intrinsic layers of the PIN devices include a quantum dot structure. A first DC bias signal is applied to one of the PIN devices, and a second DC bias signal is applied to the other PIN device. The first DC bias signal biases the intrinsic layer at an operating voltage where the index of refraction of the intrinsic layer is at a positive portion of an electro-refraction transfer function, and the second DC bias potential biases the intrinsic layer at an operating voltage where the index of refraction of the intrinsic layer is at a negative portion of the transfer function.
    Type: Application
    Filed: January 16, 2004
    Publication date: July 21, 2005
    Applicant: Northrop Grumman Corporation
    Inventors: Timothy Vang, David Scott, Elizabeth Kunkee, Wenshen Wang
  • Publication number: 20050094917
    Abstract: A PIN electro-optical traveling wave modulator (10) including diffraction gratings (34, 36) positioned at opposing sides of an optical waveguide (20) that act to change the propagation pattern of the waveguide (20). The modulator (10) includes an N-type layer (14), a P-type layer (18) and an intrinsic layer (16) acting as the waveguide (20). A metal electrode (26) is in electrical contact with the N-type layer (14), and a metal electrode (30) is in electrical contact with the P-type layer (18). The electrodes (26, 30) define an RF transmission line. An optical wave (22) propagates along the waveguide (20) and interacts with the gratings (34, 36) which slow the optical wave (22) to match its speed to the speed of the RF wave in the transmission line. In one embodiment, the gratings (34, 36) are 2-D gratings formed by vertical holes (38) in the waveguide (20).
    Type: Application
    Filed: November 3, 2003
    Publication date: May 5, 2005
    Inventors: Wenshen Wang, David Scott, Elizabeth Kunkee
  • Publication number: 20040201079
    Abstract: A single-electrode, push-pull semiconductor PIN Mach-Zehnder modulator (10) that includes first and second PIN devices (12, 14) on a substrate (16). Intrinsic layers (22, 28) of the devices (12, 14) are the active regions of two arms (50, 52) of a Mach-Zehnder interferometer. An outer electrode (38) is connected to the N layer (24) of the first PIN device (12) and a center electrode (40) is connected to the P layer (20) of the first PIN device (12). An outer electrode (42) is connected to the P layer (26) of the second PIN device (14) and the center electrode (40) is connected to the N layer (30) of the second PIN device (14). An RF modulation signal biases the PIN devices (12, 14) in opposite directions and causes the index refraction of the intrinsic layers (22, 28) to change in opposite directions to give a push-pull modulation effect.
    Type: Application
    Filed: April 10, 2003
    Publication date: October 14, 2004
    Inventors: David C. Scott, Timothy A. Vang, Wenshen Wang, Elizabeth T. Kunkee
  • Publication number: 20040201008
    Abstract: A coupled quantum well Mach-Zehnder modulator that employs a push-pull structure to reduce the modulation voltage. The Mach-Zehnder modulator includes a first arm having a first PIN semiconductor device and a second arm having a second PIN semiconductor device. The intrinsic layers of the PIN devices include a coupled quantum well structure to provide an opposite index of refraction change for different DC bias voltages. An RF signal used to modulate the light beam is applied to the two arms in phase and causes the index of refraction in the intrinsic layers of the two PIN devices to change in opposite directions so that a push-pull type drive is achieved without requiring 180° out-of-phase RF drive signal.
    Type: Application
    Filed: April 10, 2003
    Publication date: October 14, 2004
    Inventors: Elizabeth T. Kunkee, David V. Forbes, David C. Scott, Timothy A. Vang, Wenshen Wang