Patents by Inventor Wenxiang Zhao

Wenxiang Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210167652
    Abstract: This invention proposes a method to regulate high efficiency region of permanent magnet motor. The internal relationship between the point with maximum efficiency and the points around it is firstly revealed. Then, the optimal combination of copper loss, iron loss and permanent magnet eddy-current loss is presented when maximum efficiency point moves toward different directions. Hence, the method for regulating high efficiency region can be obtained. This method can be suitable for any type of permanent magnet motors, which can adjust high efficiency region to the dense working point area of the motor under different operating conditions according to design requirements. If this method is used into electric vehicle, it can combine the high efficiency region with the electric vehicle driving cycle to reduce energy consumption and enhance the life mileage of electric vehicle effectively.
    Type: Application
    Filed: June 30, 2017
    Publication date: June 3, 2021
    Inventors: Qian CHEN, Xun FAN, Guohai LIU, Wenxiang ZHAO, Jinghua JI, Gaohong XU
  • Patent number: 10848025
    Abstract: A permanent magnet brushless motor has a stator, an armature winding, a rotor, and a permanent magnet. The stator is provided with an armature groove. The armature winding is placed in the armature groove. The stator and the rotor are spaced apart by an air gap; the permanent magnet is attached to the surface of the rotor, and is magnetized by a Halbach array structure. The motor is an eight-phase motor, and phases are evenly distributed at a phase belt angle of 45°. The motor and the proposed control algorithm have good fault-tolerant effects, and the average torque after fault tolerance is basically consistent with that in normal operation.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: November 24, 2020
    Inventors: Wenxiang Zhao, Tao Tao, Jihong Zhu, Jinghua Ji, Deshui Hu
  • Patent number: 10700562
    Abstract: An electric motor includes 3 stators and 1 rotor which employs distributed winding. The axial magnetic circuit generates permanent magnet torque, while the radial magnetic circuit generates reluctance torque. By decoupling the axial and radial magnetic circuits, the separation and the independent control of the permanent magnet torque and the reluctance torque are realized. Each stator and rotor can be processed independently, and modular installation can be processed, thereby reducing the difficulty of motor processing.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: June 30, 2020
    Assignee: JIANGSU UNIVERSITY
    Inventors: Qian Chen, Wenxiang Zhao, Guohai Liu, Jinghua Ji, Gaohong Xu, Zhipeng Lin
  • Patent number: 10574164
    Abstract: The invention proposes a fault-tolerant field-oriented control method of five-phase interior permanent-magnet fault-tolerant linear motor (IPM-FTLM) with two nonadjacent short-circuit phase faults. Firstly, the extended Clark transformation matrix can be obtained according to the principle that magnetic motive force (MMF) keeps constant before and after the two-phase open-circuit faults, the constraint that the sum of healthy phase currents is zero and the adjacent two-phase current amplitude is equal. The back electric motive force (EMF) can be estimated by the transposed matrix. The nonlinear strong coupling system becomes the first-order inertia system when using the internal mode controller, the first-order inertia feed-forward voltage compensator and back-EMF observer, as the motor is with fault.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: February 25, 2020
    Assignee: Jiangsu University
    Inventors: Huawei Zhou, Guohai Liu, Jinghua Ji, Wenxiang Zhao, Qian Chen, Long Chen
  • Patent number: 10541595
    Abstract: Disclosed is a double-stator linear vernier permanent magnet (DS-LVPM) motor and method to increase the magnetic field modulation effect. The motor contains a primary, and first and second secondaries on both sides of the primary, spaced by an air gap. The motor secondary includes modulation teeth. The primary is bilaterally symmetrical, and permanent magnets (PM) are embedded in the yoke of the primary core elements. The design solves the inherent problem of flux leakage at the end of PMs for conventional VPM motors, so as to improve utilization of PMs, thereby increasing thrust density of the motors. Additionally, the motor secondaries are laminated by silicon steel sheet, which saves PM material and significantly reduces cost for linear long stroke applications. By adjusting PM structure parameters, the design can use finite element method (FEM) to calculate repeatedly to get PM structure parameters corresponding to maximum electromotive force (EMF).
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: January 21, 2020
    Assignee: JIANGSU UNIVERSITY
    Inventors: Wenxiang Zhao, Jian Zhu, Jinghua Ji, Guohai Liu, Zhengmeng Liu, Qian Chen, Jinwei Chen
  • Patent number: 10530278
    Abstract: A method named as Magnet Shifting to reduce torque ripple of permanent magnet synchronous motor is disclosed. A way of reasonably choosing the repeating unit of magnetic pole, the shifting ways and the shifting angle calculation of the first and second magnet shifting is described, which are carried on the repeating unit of magnetic poles individually or repeatedly to improve the performance of the motor. The method can be applied to surface, surface-inset and inner-embedded permanent magnet motors, which can reduce torque ripple caused by different torque components, including cogging torque, reluctance torque or permanent magnet torque. It also can quickly calculate the shifting angle of the magnetic pole by choosing repeating unit reasonably. Magnet shifting can effectively enhance the sinusoidal degree of back electrodynamic force (back-EMF) waveform, where the repeating units can offset the torque ripple between the maximum and the minimum value to reduce the different torque harmonics.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: January 7, 2020
    Assignee: JIANGSU UNIVERSITY
    Inventors: Guohai Liu, Xinxin Du, Wenxiang Zhao, Qian Chen, Deshui Hu
  • Publication number: 20190393811
    Abstract: A method named as Magnet Shifting to reduce torque ripple of permanent magnet synchronous motor is disclosed. A way of reasonably choosing the repeating unit of magnetic pole, the shifting ways and the shifting angle calculation of the first and second magnet shifting is described, which are carried on the repeating unit of magnetic poles individually or repeatedly to improve the performance of the motor. The method can be applied to surface, surface-inset and inner-embedded permanent magnet motors, which can reduce torque ripple caused by different torque components, including cogging torque, reluctance torque or permanent magnet torque. It also can quickly calculate the shifting angle of the magnetic pole by choosing repeating unit reasonably. Magnet shifting can effectively enhance the sinusoidal degree of back electrodynamic force (back-EMF) waveform, where the repeating units can offset the torque ripple between the maximum and the minimum value to reduce the different torque harmonics.
    Type: Application
    Filed: February 6, 2017
    Publication date: December 26, 2019
    Applicant: Jiangsu University
    Inventors: Guohai Liu, Xinxin Du, Wenxiang Zhao, Qian Chen, Deshui Hu
  • Patent number: 10505483
    Abstract: Disclosed are fault-tolerant permanent-magnet vernier cylindrical electric motors with an electromagnetic suspension and a fault-tolerant vector control method for a short circuit of two adjacent phases. The fault-tolerant permanent-magnet vernier cylindrical electric motor with an electromagnetic suspension and the fault-tolerant vector control method for a short circuit of two adjacent phases suppress motor thrust ripples caused by a fault of two adjacent phases of an electric motor. The dynamic performance and the steady-state performance thereof are consistent with those under a normal state, and the switching frequency of a voltage source inverter is constant.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: December 10, 2019
    Assignee: JIANGSU UNIVERSITY
    Inventors: Huawei Zhou, Zhen Lu, Guohai Liu, Wenxiang Zhao, Jinghua Ji, Long Chen
  • Publication number: 20190229666
    Abstract: Disclosed are fault-tolerant permanent-magnet vernier cylindrical electric motors with an electromagnetic suspension and a fault-tolerant vector control method for a short circuit of two adjacent phases. The fault-tolerant permanent-magnet vernier cylindrical electric motor with an electromagnetic suspension and the fault-tolerant vector control method for a short circuit of two adjacent phases suppress motor thrust ripples caused by a fault of two adjacent phases of an electric motor. The dynamic performance and the steady-state performance thereof are consistent with those under a normal state, and the switching frequency of a voltage source inverter is constant.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 25, 2019
    Inventors: Huawei Zhou, Zhen Lu, Guohai Liu, Wenxiang Zhao, Jinghua Ji, Long Chen
  • Publication number: 20190229573
    Abstract: A permanent magnet brushless motor has a stator, an armature winding, a rotor, and a permanent magnet. The stator is provided with an armature groove. The armature winding is placed in the armature groove. The stator and the rotor are spaced apart by an air gap; the permanent magnet is attached to the surface of the rotor, and is magnetized by a Halbach array structure. The motor is an eight-phase motor, and phases are evenly distributed at a phase belt angle of 45°. The motor and the proposed control algorithm have good fault-tolerant effects, and the average torque after fault tolerance is basically consistent with that in normal operation.
    Type: Application
    Filed: November 29, 2016
    Publication date: July 25, 2019
    Applicant: JIANGSU UNIVERSITY
    Inventors: Wenxiang ZHAO, Tao TAO, Jihong ZHU, Jinghua JI, Deshui HU
  • Publication number: 20190006973
    Abstract: The invention proposes a fault-tolerant field-oriented control method of five-phase interior permanent-magnet fault-tolerant linear motor (IPM-FTLM) with two nonadjacent short-circuit phase faults. Firstly, the extended Clark transformation matrix can be obtained according to the principle that magnetic motive force (MMF) keeps constant before and after the two-phase open-circuit faults, the constraint that the sum of healthy phase currents is zero and the adjacent two-phase current amplitude is equal. The back electric motive force (EMF) can be estimated by the transposed matrix. The nonlinear strong coupling system becomes the first-order inertia system when using the internal mode controller, the first-order inertia feed-forward voltage compensator and back-EMF observer, as the motor is with fault.
    Type: Application
    Filed: August 17, 2016
    Publication date: January 3, 2019
    Inventors: Huawei ZHOU, Guohai LIU, Jinghua JI, Wenxiang ZHAO, Qian CHEN, Long CHEN
  • Publication number: 20180323665
    Abstract: The invention proposes a new motor with separated permanent magnet torque and reluctance torque. Meanwhile, the optimal efficiency control method for this motor is proposed. This invention belongs to the field of motor and its drive system. The proposed motor includes 3 stators and 1 rotor (composed of 2 axial rotors and 1 radial rotor), the radial stator employs distributed winding, the axial stator adopts concentrated winding. The distributed winding and the radial reluctance rotor structure contribute to higher reluctance torque, while the concentrated winding and the surface mount permanent magnet structure offer higher permanent magnet torque. In the view of the magnetic circuit, the axial magnetic circuit generates the permanent magnet torque, and the radial magnetic circuit generates the reluctance torque. By using the decoupling of axial and radial magnetic circuits, the separation and the independent control of the permanent magnet torque and the reluctance torque are realized.
    Type: Application
    Filed: March 16, 2016
    Publication date: November 8, 2018
    Inventors: Qian CHEN, Wenxiang ZHAO, Guohai LIU, Jinghua JI, Gaohong XU, Zhipeng LIN
  • Publication number: 20180301968
    Abstract: Disclosed is a double-stator linear vernier permanent magnet (DS-LVPM) motor and method to increase the magnetic field modulation effect. The motor contains a primary, and first and second secondaries on both sides of the primary, spaced by an air gap. The motor secondary includes modulation teeth. The primary is bilaterally symmetrical, and permanent magnets (PM) are embedded in the yoke of the primary core elements. The design solves the inherent problem of flux leakage at the end of PMs for conventional VPM motors, so as to improve utilization of PMs, thereby increasing thrust density of the motors. Additionally, the motor secondaries are laminated by silicon steel sheet, which saves PM material and significantly reduces cost for linear long stroke applications. By adjusting PM structure parameters, the design can use finite element method (FFM) to calculate repeatedly to get PM structure parameters corresponding to maximum electromotive force (EMF).
    Type: Application
    Filed: December 9, 2015
    Publication date: October 18, 2018
    Inventors: Wenxiang Zhao, Jian Zhu, Jinghua Ji, Guohai Liu, Zhengmeng Liu, Qian Chen, Jinwei Chen