Patents by Inventor Wenyih F. Lai

Wenyih F. Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11046897
    Abstract: Methods are provided for performing selective hydrodesulfurization on a naphtha boiling range stream naphtha boiling range portion of a feed. It has been unexpectedly discovered that hydrodesulfurization with improved octane retention can be performed by using a catalyst that comprises CoMo supported on a catalyst support that includes a zeotype framework. By using a catalyst support including a zeotype framework, an unexpectedly high amount of octane in the naphtha boiling range portion of the hydrodesulfurized effluent is maintained.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: June 29, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Majosefina Cunningham, Gregory R. Johnson, Wenyih F. Lai, Brandon J. O'Neill
  • Patent number: 10981845
    Abstract: Disclosed are processes for conversion of a feedstock comprising C8+ aromatic hydrocarbons to lighter aromatic products in which the feedstock and optionally hydrogen are contacted in the presence of the catalyst composition under conversion conditions effective to dealkylate and transalkylate said C8+ aromatic hydrocarbons to produce said lighter aromatic products comprising benzene, toluene and xylene. The catalyst composition comprises a zeolite, a first metal, and a second metal, and is treated with a source of sulfur and/or a source of steam.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: April 20, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Wenyih F. Lai, Hari Nair, Joshua I. Cutler, Chuansheng Bai, Nicholas S. Rollman
  • Publication number: 20210047249
    Abstract: Systems and methods are provided for an improved transalkylation process that better tolerates the presence of C10+ aromatics and may be conducted substantially in the liquid phase. The transalkylation feedstock may comprise alkyl-substituted benzenes and naphthalene and the transalkylation effluent comprises alkyl-substituted naphthalene and benzene, toluene, and/or xylenes.
    Type: Application
    Filed: February 10, 2017
    Publication date: February 18, 2021
    Inventors: Tan-Jen Chen, Wenyih F. Lai, Brett T. Loveless, Matthew S. Ide, Jeevan S. Abichandani
  • Publication number: 20210040016
    Abstract: Disclosed is a process for producing mixed xylenes and C9+ hydrocarbons in which an aromatic hydrocarbon feedstock comprising benzene and/or toluene is contacted with an alkylating agent comprising methanol and/or dimethyl ether under alkylation conditions in the presence of an alkylation catalyst to produce an alkylated aromatic product stream comprising the mixed xylenes and C9+ hydrocarbons. The mixed xylenes are subsequently converted to para-xylene, and the C9+ hydrocarbons and its components may be supplied as motor fuels blending components. The alkylation catalyst comprises a molecular sieve having a Constraint Index in the range from greater than zero up to about 3. The molar ratio of aromatic hydrocarbon to alkylating agent is in the range of greater than 1:1 to less than 4:1.
    Type: Application
    Filed: March 15, 2019
    Publication date: February 11, 2021
    Inventors: Tan-Jen Chen, Wenyih F. Lai, Anthony Go
  • Publication number: 20200369580
    Abstract: Processes are described for isomerizing one or more C14-C24 alpha olefins to produce an isomerization mixture comprising one or more C14-C24 internal olefins comprising contacting an olefinic feed comprising the one or more C14-C24 alpha olefins with a catalyst under isomerization conditions, wherein the catalyst comprises a microporous crystalline aluminosilicate having an MWW framework. The resulting isomerization mixture typically exhibits a low pour point with maintained biodegradability properties as compared to the olefinic feed, and is particularly useful in drilling fluid and paper sizing compositions.
    Type: Application
    Filed: December 4, 2018
    Publication date: November 26, 2020
    Inventors: Ronald Raymond Hill, JR., Renyuan Yu, Elizabeth G. Mahoney, Anatoly I. Kramer, Wenyih F. Lai, Paul F. Keusenkothen, Nan Hu, Andrew P. Broenen, James R. Lattner
  • Publication number: 20200290940
    Abstract: Processes are described for isomerizing one or more C4-C24 alpha olefins to produce an isomerization mixture comprising one or more C4-C24 internal olefins comprising contacting an olefinic feed comprising the one or more C4-C24 alpha olefins with a catalyst under isomerization conditions, wherein the catalyst comprises a microporous crystalline aluminosilicate selected from the group consisting of ZSM-5, ZSM-23, ZSM-35, ZSM-11, ZSM-12, ZSM-48, ZSM-57, and mixtures or combinations thereof, and wherein the microporous crystalline aluminosilicate has a SiO2/Al2O3 molar ratio of less than or equal to about 100. The resulting isomerization mixture typically exhibits a lower pour point and maintained biodegradability properties as compared to the olefinic feed, and is particularly useful in drilling fluid and paper sizing compositions.
    Type: Application
    Filed: December 4, 2018
    Publication date: September 17, 2020
    Inventors: Anatoly I Kramer, Renyuan Yu, Brett Thomas Loveless, Wenyih F. Lai, Mechilium J.G. Janssen
  • Patent number: 10745285
    Abstract: A process for converting a feedstock comprising an organic compound to a conversion product by contacting said feedstock at organic compound conversion conditions with a catalyst comprising a mordenite zeolite having a mesoporous surface area of greater than 30 m2/g and an average primary crystal size as measured by TEM of less than 80 nm.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: August 18, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih F. Lai, Nicholas S. Rollman, Guang Cao
  • Publication number: 20200179913
    Abstract: Catalyst composition which comprises a first zeolite having a BEA* framework type and a second zeolite having a MOR framework type and a mesopore surface area of greater than 30 m2/g is disclosed. These catalyst compositions are used to remove catalyst poisons from untreated feed streams having one or more impurities which cause deactivation of the downstream catalysts employed in hydrocarbon conversion processes, such as those that produce mono-alkylated aromatic compounds.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 11, 2020
    Inventors: Matthew S. Ide, Doron Levin, Wenyih F. Lai, Ivy D. Johnson, Scott J. Weigel, Brett T. Loveless
  • Patent number: 10611705
    Abstract: Disclosed is a process for the conversion of acyclic C5 feedstock to a product comprising cyclic C5 compounds, including cyclopentadiene, and formulated catalyst compositions for use in such process. The process comprises contacting the feedstock and, optionally, hydrogen under acyclic C5 conversion conditions in the presence of a catalyst composition to form the product. The catalyst composition comprises a microporous crystalline metallosilicate, a Group 10 metal or compound thereof, a binder, optionally, a metal selected from the group consisting of rare earth metals, metals of Groups 8, 9, or 11, mixtures or combinations thereof, or a compound thereof, in combination with a Group 1 alkali metal or a compound thereof and/or a Group 2 alkaline earth metal or a compound thereof.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: April 7, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Xiaoying Bao, Chuansheng Bai, Jeremy W. Bedard, Jocelyn A. Gilcrest, Wenyih F. Lai
  • Publication number: 20200031740
    Abstract: Disclosed are processes for conversion of a feedstock comprising C8+ aromatic hydrocarbons to lighter aromatic products in which the feedstock and optionally hydrogen are contacted in the presence of a first and a second catalyst composition under conversion conditions effective to produce said lighter aromatic products comprising benzene, toluene and xylene. In the process, the C8+ aromatic hydrocarbons are dealkylated to form C6-C7 aromatic hydrocarbon and the C2+ olefins formed are saturated. The remaining C8+ aromatic hydrocarbons are transalkylated with the C6-C7 aromatic hydrocarbon. The first and second catalyst compositions each comprise a zeolite, a first metal, and optionally a second metal, and are treated with a source of sulfur and/or a source of steam.
    Type: Application
    Filed: September 28, 2017
    Publication date: January 30, 2020
    Inventors: Christine N. Elias, Wenyih F. Lai, Hari Nair, Joshua I. Cutler, Chuansheng Bai, Nicholas S. Rollman
  • Publication number: 20200031737
    Abstract: Disclosed are processes for conversion of a feedstock comprising C8+ aromatic hydrocarbons to lighter aromatic products in which the feedstock and optionally hydrogen are contacted in the presence of the catalyst composition under conversion conditions effective to dealkylate and transalkylate said C8+ aromatic hydrocarbons to produce said lighter aromatic products comprising benzene, toluene and xylene. The catalyst composition comprises a zeolite, a first metal, and a second metal, and is treated with a source of sulfur and/or a source of steam.
    Type: Application
    Filed: September 28, 2017
    Publication date: January 30, 2020
    Inventors: Christine N. Elias, Wenyih F. Lai, Hari Nair, Joshua I. Cutler, Chuansheng Bai, Nicholas S. Rollman
  • Publication number: 20190375995
    Abstract: Methods are provided for performing selective hydrodesulfurization on a naphtha boiling range stream naphtha boiling range portion of a feed. It has been unexpectedly discovered that hydrodesulfurization with improved octane retention can be performed by using a catalyst that comprises CoMo supported on a catalyst support that includes a zeotype framework. By using a catalyst support including a zeotype framework, an unexpectedly high amount of octane in the naphtha boiling range portion of the hydrodesulfurized effluent is maintained.
    Type: Application
    Filed: May 17, 2019
    Publication date: December 12, 2019
    Inventors: Chuansheng Bai, Majosefina Cunningham, Gregory R. Johnson, Wenyih F. Lai, Brandon J. O'Neill
  • Publication number: 20190241485
    Abstract: Embodiments disclosed herein include a process for producing paraxylene and catalyst for use in processes for producing paraxylene. In an embodiment, the process includes contacting an aromatic hydrocarbon feed comprising benzene and/or toluene with an alkylating reagent comprising methanol and/or dimethyl ether in at least one alkylation reaction zone in the presence of an alkylation catalyst comprising a molecular sieve having a Constrain Index less than 5 and under alkylation conditions. The alkylation catalyst comprises at least one of a rare earth metal or alkaline earth metal and a binder, and a majority of the at least one rare earth metal or alkaline earth metal is deposited on the molecular sieve. In addition, the process includes producing an alkylated aromatic product comprising xylenes.
    Type: Application
    Filed: December 11, 2018
    Publication date: August 8, 2019
    Inventors: Wenyih F. Lai, Tan-Jen Chen, Seth M. Washburn
  • Publication number: 20180362860
    Abstract: Methods and catalysts are provided for performing dewaxing of diesel boiling range fractions, such as trim dewaxing, that allow for production of diesel boiling range fuels with improved cold flow properties at desirable yields. In some aspects, the methods can include use of dewaxing catalysts based on an MEL framework structure (ZSM-11) to provide improved dewaxing activity. This can provide sufficient dewaxing activity to achieve a desired level of improvement in cold flow properties at the lower hydrotreating temperatures that are generally desired near the start of operation of a hydrotreating reactor. In other aspects, the methods can include use of MEL dewaxing catalysts with reduced ratios of molecular sieve to binder so that trim dewaxing can be provided while maintaining a desirable yield under end-of-run hydrotreating conditions.
    Type: Application
    Filed: December 19, 2016
    Publication date: December 20, 2018
    Inventors: Stephen J. McCarthy, Paul Podsiadlo, Chuansheng Bai, Richard C. Dougherty, Wenyih F. Lai, William W. Lonergan
  • Publication number: 20180319722
    Abstract: Disclosed is a process for the conversion of acyclic C5 feedstock to a product comprising cyclic C5 compounds, including cyclopentadiene, and formulated catalyst compositions for use in such process. The process comprises contacting the feedstock and, optionally, hydrogen under acyclic C5 conversion conditions in the presence of a catalyst composition to form the product. The catalyst composition comprises a microporous crystalline metallosilicate, a Group 10 metal or compound thereof, a binder, optionally, a metal selected from the group consisting of rare earth metals, metals of Groups 8, 9, or 11, mixtures or combinations thereof, or a compound thereof, in combination with a Group 1 alkali metal or a compound thereof and/or a Group 2 alkaline earth metal or a compound thereof.
    Type: Application
    Filed: April 10, 2018
    Publication date: November 8, 2018
    Inventors: Larry L. Iaccino, Xiaoying Bao, Chuansheng Bai, Jeremy W. Bedard, Jocelyn A. Gilcrest, Wenyih F. Lai
  • Patent number: 10118165
    Abstract: Disclosed is a catalyst composition and its use in a process for the conversion of a feedstock containing C8+ aromatic hydrocarbons to produce light aromatic products, comprising benzene, toluene and xylene. The catalyst composition comprises a first zeolite having a constraint index of 3 to 12, a second zeolite comprising a mordenite zeolite synthesized from TEA or MTEA, at least one first metal of Group 10 of the IUPAC Periodic Table, and at least one second metal of Group 11 to 15 of the IUPAC Periodic Table, wherein said mordenite zeolite has a mesopore surface area of greater than 30 m2/g and said mordenite zeolite comprises agglomerates composed of primary crystallites, wherein said primary crystallites have an average primary crystal size as measured by TEM of less than 80 nm and an aspect ratio of less than 2.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: November 6, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih F. Lai, Christine N. Elia, Jane C. Cheng, Shifang L. Luo, Hari Nair, Joshua I. Cutler, Doron Levin
  • Publication number: 20180265369
    Abstract: The present invention provides a mordenite zeolite having a mesopore surface area of greater than 30 m2/g and an average primary crystal size as measured by TEM of less than 80 nm, and methods of making the mordenite zeolite.
    Type: Application
    Filed: May 21, 2018
    Publication date: September 20, 2018
    Inventors: Wenyih F. Lai, Nicholas S. Rollman, Guang Cao
  • Patent number: 10058853
    Abstract: Disclosed is a catalyst composition and its use in a process for the conversion of a feedstock containing C8+ aromatic hydrocarbons to produce light aromatic products, comprising benzene, toluene and xylene. The catalyst composition comprises a mordenite zeolite synthesized from TEA or MTEA, optionally at least one first metal of Group 10 of the IUPAC Periodic Table, and optionally at least one second metal of Group 11 to 15 of the IUPAC Periodic Table, wherein said mordenite zeolite has a mesopore surface area of greater than 30 m2/g and said mordenite zeolite comprises agglomerates composed of primary crystallites, wherein said primary crystallites have an average primary crystal size as measured by TEM of less than 80 nm and an aspect ratio of less than 2.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: August 28, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih F. Lai, Christine N. Elia, Jane C. Cheng, Shifang L. Luo, Hari Nair, Joshua I. Cutler, Doron Levin, Chuansheng Bai
  • Patent number: 10058854
    Abstract: Disclosed are a catalyst system and its use in a process for the conversion of a feedstock containing C8+ aromatic hydrocarbons to produce light aromatic products, comprising benzene, toluene and xylene.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: August 28, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Shifang L. Luo, Hari Nair, Wenyih F. Lai, Robert G. Tinger
  • Patent number: 10017394
    Abstract: The present invention provides a mordenite zeolite having a mesopore surface area of greater than 30 m2/g and an average primary crystal size as measured by TEM of less than 80 nm, and methods of making the mordenite zeolite.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: July 10, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih F. Lai, Nicholas S. Rollman, Guang Cao