Patents by Inventor Wen-Yin Weng

Wen-Yin Weng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10312235
    Abstract: A fin shaped structure and a method of forming the same. The method includes providing a substrate having a first fin structure and a second fin structure. Next, an insulation material layer is formed on the substrate. Then, a portion of the first fin structure is removed, to form a first recess. Following this, a first buffer layer and a first channel layer are formed sequentially in the first recess. Next, a portion of the second fin structure is removed, to form a second recess. Then, a second buffer layer and a second channel layer are formed in the second recess sequentially, wherein the second buffer layer is different from the first buffer layer.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: June 4, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Wei-Heng Hsu, Yu-Ming Lin, Ya-Ru Yang
  • Publication number: 20180166444
    Abstract: A fin shaped structure and a method of forming the same. The method includes providing a substrate having a first fin structure and a second fin structure. Next, an insulation material layer is formed on the substrate. Then, a portion of the first fin structure is removed, to form a first recess. Following this, a first buffer layer and a first channel layer are formed sequentially in the first recess. Next, a portion of the second fin structure is removed, to form a second recess. Then, a second buffer layer and a second channel layer are formed in the second recess sequentially, wherein the second buffer layer is different from the first buffer layer.
    Type: Application
    Filed: February 8, 2018
    Publication date: June 14, 2018
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Wei-Heng Hsu, Yu-Ming Lin, Ya-Ru Yang
  • Patent number: 9929154
    Abstract: A fin shaped structure and a method of forming the same. The method includes providing a substrate having a first fin structure and a second fin structure. Next, an insulation material layer is formed on the substrate. Then, a portion of the first fin structure is removed, to form a first recess. Following this, a first buffer layer and a first channel layer are formed sequentially in the first recess. Next, a portion of the second fin structure is removed, to form a second recess. Then, a second buffer layer and a second channel layer are formed in the second recess sequentially, wherein the second buffer layer is different from the first buffer layer.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: March 27, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Wei-Heng Hsu, Yu-Ming Lin, Ya-Ru Yang
  • Patent number: 9793296
    Abstract: A method for fabricating substrate of a semiconductor device includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: October 17, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Ya-Ru Yang, Yi-Ting Wu, Yu-Ming Lin, Jen-Yu Wang
  • Publication number: 20170040346
    Abstract: A method for fabricating substrate of a semiconductor device includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
    Type: Application
    Filed: October 17, 2016
    Publication date: February 9, 2017
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Ya-Ru Yang, Yi-Ting Wu, Yu-Ming Lin, Jen-Yu Wang
  • Patent number: 9508799
    Abstract: A method for fabricating substrate of a semiconductor device is disclosed. The method includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: November 29, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Ya-Ru Yang, Yi-Ting Wu, Yu-Ming Lin, Jen-Yu Wang
  • Publication number: 20160141288
    Abstract: A fin shaped structure and a method of forming the same. The method includes providing a substrate having a first fin structure and a second fin structure. Next, an insulation material layer is formed on the substrate. Then, a portion of the first fin structure is removed, to form a first recess. Following this, a first buffer layer and a first channel layer are formed sequentially in the first recess. Next, a portion of the second fin structure is removed, to form a second recess. Then, a second buffer layer and a second channel layer are formed in the second recess sequentially, wherein the second buffer layer is different from the first buffer layer.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 19, 2016
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Wei-Heng Hsu, Yu-Ming Lin, Ya-Ru Yang
  • Patent number: 9299839
    Abstract: A P-type field effect transistor includes: a gate area; an insulated area, adjacent to the gate area; a source region and a drain region made by silicon germanium, respectively, adjacent to the second side of the insulated area; a channel area, adjacent to the insulated area and formed between the source region and the drain region; a conductive layer, electrically connected to the source region and the drain region, respectively; and a plurality of capping layers, connected between the conductive layer and the source/drain regions, wherein the silicon layer(s) and the silicon germanium layer(s) are stacked alternately, and of which a silicon layer contacts the source/drain silicon germanium regions, while a silicon germanium layer contacts the conductive layer. The present invention also provides a complementary metal oxide semiconductor transistor including the P-type field effect transistor mentioned above.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: March 29, 2016
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Wei-Heng Hsu, Yi-Ting Wu, Yu-Ming Lin, Jen-Yu Wang
  • Publication number: 20160064485
    Abstract: A method for fabricating substrate of a semiconductor device is disclosed. The method includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 3, 2016
    Inventors: Wen-Yin Weng, Cheng-Tung Huang, Ya-Ru Yang, Yi-Ting Wu, Yu-Ming Lin, Jen-Yu Wang
  • Publication number: 20160064563
    Abstract: A P-type field effect transistor includes: a gate area; an insulated area, adjacent to the gate area; a source region and a drain region made by silicon germanium, respectively, adjacent to the second side of the insulated area; a channel area, adjacent to the insulated area and formed between the source region and the drain region; a conductive layer, electrically connected to the source region and the drain region, respectively; and a plurality of capping layers, connected between the conductive layer and the source/drain regions, wherein the silicon layer(s) and the silicon germanium layer(s) are stacked alternately, and of which a silicon layer contacts the source/drain silicon germanium regions, while a silicon germanium layer contacts the conductive layer. The present invention also provides a complementary metal oxide semiconductor transistor including the P-type field effect transistor mentioned above.
    Type: Application
    Filed: October 3, 2014
    Publication date: March 3, 2016
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: WEN-YIN WENG, CHENG-TUNG HUANG, WEI-HENG HSU, YI-TING WU, YU-MING LIN, JEN-YU WANG
  • Publication number: 20160003888
    Abstract: A method of characterizing a device may be used to determine a metal work function of the device according to a threshold voltage, a body effect, and an oxide capacitance of the device. The threshold voltage may be determined according to a current to voltage curve. The oxide capacitance may be determined according to a capacitor to voltage curve.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 7, 2016
    Inventors: Wen-Yin Weng, Wei-Heng Hsu, Cheng-Tung Huang, Yi-Ting Wu, Yu-Ming Lin, Jen-Yu Wang