Patents by Inventor Wenyong Luo

Wenyong Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10689287
    Abstract: A method for preparing a doped optical fibre preform includes formulating, a rare earth material or a functional metal material and a co-doping agent into a doping solution, mixing a high-purity quartz powder with the doping solution, drying same at a temperature of 100° C.-150° C. for 12-48 hours, crushing and screening the same to obtain a doped quartz powder; depositing the doped quartz powder onto the surface of a target rod to form a doped core layer; replacing the doped quartz powder with the high-purity quartz powder, and depositing the high-purity quartz powder onto the surface of the doped core layer to form a quartz outer cladding; and removing the target rod, and gradually collapsing the entirety formed from the doped core layer and the quartz outer cladding at a high temperature to obtain the doped optical fibre preform.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: June 23, 2020
    Assignee: FIBERHOME TELECOMMUNICATION TECHNOLOGIES CO., LTD
    Inventors: Cheng Du, Wenyong Luo, Lei Yan, Tao Zhang, Chao Chen, Yili Ke, Ming Kong, Jie Zhang, Zhijian Liu, Lifeng Liu
  • Publication number: 20180305237
    Abstract: A method for preparing a doped optical fibre preform includes formulating, a rare earth material or a functional metal material and a co-doping agent into a doping solution, mixing a high-purity quartz powder with the doping solution, drying same at a temperature of 100°C.-150°C. for 12-48 hours, crushing and screening the same to obtain a doped quartz powder; depositing the doped quartz powder onto the surface of a target rod to form a doped core layer; replacing the doped quartz powder with the high-purity quartz powder, and depositing the high-purity quartz powder onto the surface of the doped core layer to form a quartz outer cladding; and removing the target rod, and gradually collapsing the entirety formed from the doped core layer and the quartz outer cladding at a high temperature to obtain the doped optical fibre preform.
    Type: Application
    Filed: October 21, 2016
    Publication date: October 25, 2018
    Applicant: FIBERHOME TELECOMMUNICATION TECHNOLOGIES CO., LTD
    Inventors: Cheng DU, Wenyong LUO, Lei YAN, Tao ZHANG, Chao CHEN, Yili KE, Ming KONG, Jie ZHANG, Zhijian LIU, Lifeng LIU
  • Patent number: 9726817
    Abstract: Disclosed is a small-diameter polarization maintaining optical fiber, which relates to the field of special optical fibers. The small-diameter polarization maintaining optical fiber comprises a quartz optical fiber (5); the periphery thereof is provided with an inner coating (6) and an outer coating (8); the interior of the quartz optical fiber (5) is provided with an optical fiber core layer (1) and a quartz cladding (2); two stress zones (4) are arranged between the optical fiber core layer (1) and the quartz cladding (2); a buffer coating (7) is arranged between the inner coating (6) and the outer coating (8); the periphery of each stress zone (4) is provided with a buffer layer (3) which is concentric with the stress zone (4); when a working wavelength of a small-diameter polarization maintaining optical fiber is 1310 nm, the attenuation thereof reaches less than 0.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: August 8, 2017
    Assignee: FIBERHOME TELECOMMUNICATION TECHNOLOGIES CO., LTD.
    Inventors: Wenyong Luo, Zhijian Liu, Yili Ke, Qi Mo, Fuming Hu, Qiong Lei, Zhiwen Kang, Rong Dan, Lei Zhao
  • Publication number: 20170139129
    Abstract: Disclosed is a small-diameter polarization maintaining optical fiber, which relates to the field of special optical fibers. The small-diameter polarization maintaining optical fiber comprises a quartz optical fiber (5); the periphery thereof is provided with an inner coating (6) and an outer coating (8); the interior of the quartz optical fiber (5) is provided with an optical fiber core layer (1) and a quartz cladding (2); two stress zones (4) are arranged between the optical fiber core layer (1) and the quartz cladding (2); a buffer coating (7) is arranged between the inner coating (6) and the outer coating (8); the periphery of each stress zone (4) is provided with a buffer layer (3) which is concentric with the stress zone (4); when a working wavelength of a small-diameter polarization maintaining optical fiber is 1310 nm, the attenuation thereof reaches less than 0.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 18, 2017
    Applicant: FIBERHOME TELECOMMUNICATION TECHNOLOGIES CO., LTD.
    Inventors: WENYONG LUO, ZHIJIAN LIU, YILI KE, QI MO, FUMING HU, QIONG LEI, ZHIWEN KANG, RONG DAN, LEI ZHAO
  • Patent number: 9647413
    Abstract: Provided are a high-efficiency parallel-beam laser optical fiber drawing method and optical fiber, the method including the steps of: S1: providing base planes on the side surfaces of both a gain optical fiber preform and a pump optical fiber preform, inwardly processing the base plane of the gain optical fiber preform to make a plurality of ribs protrude, and inwardly providing a plurality of grooves on the base plane of the pump optical fiber preform; S2: embedding the ribs into the grooves, tapering and fixing one end of the combination of the ribs and the grooves to form a parallel-beam laser optical fiber preform; S3: drawing the parallel-beam laser optical fiber preform into parallel-beam laser optical fibers. The process has high repeatability, and the obtained parallel-beam laser achieves peelability of pump optical fibers in a set area, thus facilitating multi-point pump light injection of parallel-beam laser optical fibers.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: May 9, 2017
    Assignee: Fiberhome Telecommunication Technologies Co., Ltd.
    Inventors: Cheng Du, Wei Chen, Shiyu Li, Yili Ke, Qi Mo, Tao Zhang, Wenyong Luo, Kun Du, Rong Dan
  • Publication number: 20160181758
    Abstract: Provided are a high-efficiency parallel-beam laser optical fiber drawing method and optical fiber, the method including the steps of: S1: providing base planes on the side surfaces of both a gain optical fiber preform and a pump optical fiber preform, inwardly processing the base plane of the gain optical fiber preform to make a plurality of ribs protrude, and inwardly providing a plurality of grooves on the base plane of the pump optical fiber preform; S2: embedding the ribs into the grooves, tapering and fixing one end of the combination of the ribs and the grooves to form a parallel-beam laser optical fiber preform; S3: drawing the parallel-beam laser optical fiber preform into parallel-beam laser optical fibers. The process has high repeatability, and the obtained parallel-beam laser achieves peelability of pump optical fibers in a set area, thus facilitating multi-point pump light injection of parallel-beam laser optical fibers.
    Type: Application
    Filed: August 21, 2014
    Publication date: June 23, 2016
    Inventors: Cheng DU, Wei CHEN, Shiyu LI, Yili KE, Qi MO, Tao ZHANG, Wenyong LUO, Kun DU, Rong DAN
  • Patent number: 9014523
    Abstract: A large mode field active optical fiber and manufacture method thereof is provided. The large mode field active optical fiber is formed by drawing a fiber core (1), a quartz glass internal cladding (2), a quartz glass outer cladding (3), and a coating (4). The quartz glass internal cladding (2), the quartz glass outer cladding (3), and the coating (4) are sequentially coated on the outer surface of the fiber core (1). The fiber core (1) is formed by depositing, melting, and shrinking the tetrachlorosilane doped with rare earth ions in a quartz glass tube. The refractive index of the fiber core (1) is a graded refractive index, and the section parameter a thereof is 1???3. The appearance of the quartz glass inner cladding (2) is regular multi-prism shaped.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: April 21, 2015
    Assignee: Fiberhome Telecommunications Technologies Co., Ltd.
    Inventors: Wei Chen, Shiyu Li, Daoyu Lei, Dongxiang Wang, Wenyong Luo, Wenjun Huang, Fuming Hu, Peng Hu
  • Publication number: 20120263428
    Abstract: A large mode field active optical fiber and manufacture method thereof is provided. The large mode field active optical fiber is formed by drawing a fiber core (1), a quartz glass internal cladding (2), a quartz glass outer cladding (3), and a coating (4). The quartz glass internal cladding (2), the quartz glass outer cladding (3), and the coating (4) are sequentially coated on the outer surface of the fiber core (1). The fiber core (1) is formed by depositing, melting, and shrinking the tetrachlorosilane doped with rare earth ions in a quartz glass tube. The refractive index of the fiber core (1) is a graded refractive index, and the section parameter a thereof is 1???3. The appearance of the quartz glass inner cladding (2) is regular multi-prism shaped.
    Type: Application
    Filed: November 24, 2010
    Publication date: October 18, 2012
    Inventors: Wei Chen, Shiyu Li, Daoyu Lei, Dongxiang Wang, Wenyong Luo, Wenjun Huang, Fuming Hu, Peng Hu
  • Publication number: 20080098492
    Abstract: The invention relates to the field of crop selection and crop breeding, particularly to selection methods for breeding colony varieties of crops involving self-pollination and normal cross-pollination. Selection methods include crossing male parents with female parents to obtain crop populations, wherein the female parents are individual plants in a segregation population or self-crossed descendants of early segregation generations, said segregation population obtained by hybridizing pairs of parental plants with different desired characteristics to produce population F1, and then hybridizing pairs of F1 one more time. The male parents are homozygous breeding lines, varieties, F1, heterozygous plants in the segregation generations or individual plants produced in the same manner as for the female group.
    Type: Application
    Filed: June 18, 2004
    Publication date: April 24, 2008
    Inventors: Li Xiaofang, Yanzhou Liu, Xin Xiao, Wenyong Luo, Jianwei Chen, Xingxue Mao, Xiaoling Wang, Danying Xing, Guiyuan Zhou