Patents by Inventor Wenzhangzhi GUO

Wenzhangzhi GUO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11861497
    Abstract: A system and method implement deep learning on a mobile device to provide a convolutional neural network (CNN) for real time processing of video, for example, to color hair. Images are processed using the CNN to define a respective hair matte of hair pixels. The respective object mattes may be used to determine which pixels to adjust when adjusting pixel values such as to change color, lighting, texture, etc. The CNN may comprise a (pre-trained) network for image classification adapted to produce the segmentation mask. The CNN may be trained for image segmentation (e.g. using coarse segmentation data) to minimize a mask-image gradient consistency loss. The CNN may further use skip connections between corresponding layers of an encoder stage and a decoder stage where shallower layers in the encoder, which contain high-res but weak features are combined with low resolution but powerful features from deeper decoder layers.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: January 2, 2024
    Assignee: L'OREAL
    Inventors: Alex Levinshtein, Cheng Chang, Edmund Phung, Irina Kezele, Wenzhangzhi Guo, Eric Elmoznino, Ruowei Jiang, Parham Aarabi
  • Publication number: 20220122299
    Abstract: A system and method implement deep learning on a mobile device to provide a convolutional neural network (CNN) for real time processing of video, for example, to color hair. Images are processed using the CNN to define a respective hair matte of hair pixels. The respective object mattes may be used to determine which pixels to adjust when adjusting pixel values such as to change color, lighting, texture, etc. The CNN may comprise a (pre-trained) network for image classification adapted to produce the segmentation mask. The CNN may be trained for image segmentation (e.g. using coarse segmentation data) to minimize a mask-image gradient consistency loss. The CNN may further use skip connections between corresponding layers of an encoder stage and a decoder stage where shallower layers in the encoder, which contain high-res but weak features are combined with low resolution but powerful features from deeper decoder layers.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 21, 2022
    Applicant: L'OREAL
    Inventors: Alex LEVINSHTEIN, Cheng Chang, Edmund Phung, Irina Kezele, Wenzhangzhi Guo, Eric Elmoznino, Ruowei Jiang, Parham Aarabi
  • Patent number: 11216988
    Abstract: A system and method implement deep learning on a mobile device to provide a convolutional neural network (CNN) for real time processing of video, for example, to color hair. Images are processed using the CNN to define a respective hair matte of hair pixels. The respective object mattes may be used to determine which pixels to adjust when adjusting pixel values such as to change color, lighting, texture, etc. The CNN may comprise a (pre-trained) network for image classification adapted to produce the segmentation mask. The CNN may be trained for image segmentation (e.g. using coarse segmentation data) to minimize a mask-image gradient consistency loss. The CNN may further use skip connections between corresponding layers of an encoder stage and a decoder stage where shallower layers in the encoder, which contain high-res but weak features are combined with low resolution but powerful features from deeper decoder layers.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: January 4, 2022
    Assignee: L'OREAL
    Inventors: Alex Levinshtein, Cheng Chang, Edmund Phung, Irina Kezele, Wenzhangzhi Guo, Eric Elmoznino, Ruowei Jiang, Parham Aarabi
  • Publication number: 20200320748
    Abstract: A system and method implement deep learning on a mobile device to provide a convolutional neural network (CNN) for real time processing of video, for example, to color hair. Images are processed using the CNN to define a respective hair matte of hair pixels. The respective object mattes may be used to determine which pixels to adjust when adjusting pixel values such as to change color, lighting, texture, etc. The CNN may comprise a (pre-trained) network for image classification adapted to produce the segmentation mask. The CNN may be trained for image segmentation (e.g. using coarse segmentation data) to minimize a mask-image gradient consistency loss. The CNN may further use skip connections between corresponding layers of an encoder stage and a decoder stage where shallower layers in the encoder, which contain high-res but weak features are combined with low resolution but powerful features from deeper decoder layers.
    Type: Application
    Filed: October 24, 2018
    Publication date: October 8, 2020
    Applicant: L'OREAL
    Inventors: Alex LEVINSHTEIN, Cheng CHANG, Edmund PHUNG, Irina KEZELE, Wenzhangzhi GUO, Eric ELMOZNINO, Ruowei JIANG, Parham AARABI