Patents by Inventor Werner K. Goetz
Werner K. Goetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220313851Abstract: A decontamination apparatus for disinfecting a surface can include a flexible textile, an array of LEDs, and a flexible cover layer. The flexible textile can have a first side facing a first direction and a second side facing a second direction opposite the first direction. The array of LEDs can be configured to output radiation in at least two separate wavelength ranges corresponding to an ultraviolet radiation range and an infrared radiation range. The flexible cover layer can cover the array of LEDs and be transparent to at least the ultraviolet radiation range. The flexible cover layer can comprise a plurality of projections configured to maintain a consistent distance between the array of LEDs and a surface to be disinfected. The flexible textile, the array of LEDs, and the flexible cover layer can be coupled together to form a flexible blanket that conforms to a contour of the surface.Type: ApplicationFiled: June 21, 2022Publication date: October 6, 2022Applicant: LUMAEGIS, INC.Inventors: Sudhir SUBRAMANYA, John S. MORREALE, Werner K. GOETZ, Matthijs Hendrik KEUPER
-
Patent number: 7951693Abstract: In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane?abulk)|/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.Type: GrantFiled: December 22, 2006Date of Patent: May 31, 2011Assignee: Philips Lumileds Lighting Company, LLCInventors: Patrick N. Grillot, Nathan F. Gardner, Werner K. Goetz, Linda T. Romano
-
Publication number: 20110121358Abstract: A semiconductor structure includes a light emitting region, a p-type region disposed on a first side of the light emitting region, and an n-type region disposed on a second side of the light emitting region. At least 10% of a thickness of the semiconductor structure on the first side of the light emitting region comprises indium. Some examples of such a semiconductor light emitting device may be formed by growing an n-type region, growing a p-type region, and growing a light emitting layer disposed between the n-type region and the p-type region. The difference in temperature between the growth temperature of a part of the n-type region and the growth temperature of a part of the p-type region is at least 140° C.Type: ApplicationFiled: January 31, 2011Publication date: May 26, 2011Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLCInventors: JUNKO KOBAYASHI, WERNER K. GOETZ, ANNELI MUNKHOLM
-
Patent number: 7906357Abstract: A semiconductor structure includes a light emitting region, a p-type region disposed on a first side of the light emitting region, and an n-type region disposed on a second side of the light emitting region. At least 10% of a thickness of the semiconductor structure on the first side of the light emitting region comprises indium. Some examples of such a semiconductor light emitting device may be formed by growing an n-type region, growing a p-type region, and growing a light emitting layer disposed between the n-type region and the p-type region. The difference in temperature between the growth temperature of a part of the n-type region and the growth temperature of a part of the p-type region is at least 140° C.Type: GrantFiled: May 15, 2006Date of Patent: March 15, 2011Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLCInventors: Junko Kobayashi, Werner K. Goetz, Anneli Munkholm
-
Patent number: 7880186Abstract: In a device, a III-nitride light emitting layer is disposed between an n-type region and a p-type region. A first spacer layer, which is disposed between the n-type region and the light emitting layer, is doped to a dopant concentration between 6×1018 cm?3 and 5×1019 cm?3. A second spacer layer, which is disposed between the p-type region and the light emitting layer, is not intentionally doped or doped to a dopant concentration less than 6×1018 cm?3.Type: GrantFiled: March 5, 2007Date of Patent: February 1, 2011Assignees: Koninklijke Phllips Electronics N.V., Phillips Lumileds Lighting Company, LLCInventors: Nathan F. Gardner, Gangyi Chen, Werner K. Goetz, Michael R. Krames, Gerd O. Mueller, Yu-Chen Shen, Satoshi Watanabe
-
Patent number: 7547908Abstract: In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane?abulk)|/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.Type: GrantFiled: December 22, 2006Date of Patent: June 16, 2009Assignee: Philips Lumilieds Lighting Co, LLCInventors: Patrick N. Grillot, Nathan F. Gardner, Werner K. Goetz, Linda T. Romano
-
Patent number: 7534638Abstract: In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane?abulk)|/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.Type: GrantFiled: December 22, 2006Date of Patent: May 19, 2009Assignee: Philips Lumiled Lighting Co., LLCInventors: Patrick N. Grillot, Nathan F. Gardner, Werner K. Goetz, Linda T. Romano
-
Publication number: 20080153192Abstract: In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane?abulk)/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.Type: ApplicationFiled: December 22, 2006Publication date: June 26, 2008Applicant: PHILIPS LUMILEDS LIGHTING COMPANY, LLCInventors: Patrick N. Grillot, Nathan F. Gardner, Werner K. Goetz, Linda T. Romano
-
Publication number: 20080153191Abstract: In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane?abulk)/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.Type: ApplicationFiled: December 22, 2006Publication date: June 26, 2008Applicant: PHILIPS LUMILEDS LIGHTING COMPANY, LLCInventors: Patrick N. Grillot, Nathan F. Gardner, Werner K. Goetz, Linda T. Romano
-
Publication number: 20080149961Abstract: In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane?abulk)/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.Type: ApplicationFiled: December 22, 2006Publication date: June 26, 2008Applicant: PHILIPS LUMILEDS LIGHTING COMPANY, LLCInventors: Patrick N. Grillot, Nathan F. Gardner, Werner K. Goetz, Linda T. Romano
-
Patent number: 7345324Abstract: A light emitting device in accordance with an embodiment of the present invention includes a first semiconductor layer of a first conductivity type having a first surface, and an active region formed overlying the first semiconductor layer. The active region includes a second semiconductor layer which is either a quantum well layer or a barrier layer. The second semiconductor layer is formed from a semiconductor alloy having a composition graded in a direction substantially perpendicular to the first surface of the first semiconductor layer. The light emitting device also includes a third semiconductor layer of a second conductivity type formed overlying the active region.Type: GrantFiled: July 7, 2005Date of Patent: March 18, 2008Assignee: Philips Lumileds Lighting Company LLCInventors: David P. Bour, Nathan F. Gardner, Werner K. Goetz, Stephen A. Stockman, Tetsuya Takeuchi, Ghulam Hasnain, Christopher P. Kocot, Mark R. Hueschen
-
Patent number: 7345323Abstract: P-type layers of a GaN based light-emitting device are optimized for formation of Ohmic contact with metal. In a first embodiment, a p-type GaN transition layer with a resistivity greater than or equal to about 7 ? cm is formed between a p-type conductivity layer and a metal contact. In a second embodiment, the p-type transition layer is any III-V semiconductor. In a third embodiment, the p-type transition layer is a superlattice. In a fourth embodiment, a single p-type layer of varying composition and varying concentration of dopant is formed.Type: GrantFiled: March 30, 2005Date of Patent: March 18, 2008Assignee: Philips Lumileds Lighting Company LLCInventors: Werner K. Goetz, Michael D. Camras, Xiaoping Chen, legal representative, Gina L. Christenson, R. Scott Kern, Chihping Kuo, Paul Scott Martin, Daniel A. Steigerwald, Changhua Chen
-
Patent number: 6989555Abstract: In a III-nitride light emitting device, a ternary or quaternary light emitting layer is configured to control the degree of phase separation. In some embodiments, the difference between the InN composition at any point in the light emitting layer and the average InN composition in the light emitting layer is less than 20%. In some embodiments, control of phase separation is accomplished by controlling the ratio of the lattice constant in a relaxed, free standing layer having the same composition as the light emitting layer to the lattice constant in a base region. For example, the ratio may be between about 1 and about 1.01.Type: GrantFiled: April 21, 2004Date of Patent: January 24, 2006Assignee: Lumileds Lighting U.S., LLCInventors: Werner K. Goetz, Michael R. Krames, Anneli Munkholm
-
Patent number: 6955933Abstract: A light emitting device in accordance with an embodiment of the present invention includes a first semiconductor layer of a first conductivity type having a first surface, and an active region formed overlying the first semiconductor layer. The active region includes a second semiconductor layer which is either a quantum well layer or a barrier layer. The second semiconductor layer is formed from a semiconductor alloy having a composition graded in a direction substantially perpendicular to the first surface of the first semiconductor layer. The light emitting device also includes a third semiconductor layer of a second conductivity type formed overlying the active region.Type: GrantFiled: July 24, 2001Date of Patent: October 18, 2005Assignee: Lumileds Lighting U.S., LLCInventors: David P. Bour, Nathan F. Gardner, Werner K. Goetz, Stephen A. Stockman, Tetsuya Takeuchi, Ghulam Hasnain, Christopher P. Kocot, Mark R. Hueschen
-
Patent number: 6914272Abstract: P-type layers of a GaN based light-emitting device are optimized for formation of Ohmic contact with metal. In a first embodiment, a p-type GaN transition layer with a resistivity greater than or equal to about 7 ?cm is formed between a p-type conductivity layer and a metal contact. In a second embodiment, the p-type transition layer is any III-V semiconductor. In a third embodiment, the p-type transition layer is a superlattice. In a fourth embodiment, a single p-type layer of varying composition and varying concentration of dopant is formed.Type: GrantFiled: November 24, 2003Date of Patent: July 5, 2005Assignee: Lumileds Lighting U.S., LLCInventors: Werner K. Goetz, Michael D. Camras, Changhua Chen, Gina L. Christenson, R. Scott Kern, Chihping Kuo, Paul Scott Martin, Daniel A. Steigerwald
-
Patent number: 6900067Abstract: A method of forming a light emitting device includes providing a sapphire substrate, growing an Al1?xGaxN first layer by vapor deposition on the substrate at a temperature between about 1000° C. and about 1180° C., and growing a III-nitride second layer overlying the first layer. The first layer may have a thickness between about 500 angstroms and about 5000 angstroms. In some embodiments, reaction between the group V precursor and the substrate is reduced by starting with a low molar ratio of group V precursor to group III precursor, then increasing the ratio during growth of the first layer, or by using nitrogen as an ambient gas.Type: GrantFiled: December 11, 2002Date of Patent: May 31, 2005Assignee: Lumileds Lighting U.S., LLCInventors: Junko Kobayashi, Werner K. Goetz
-
Publication number: 20040115853Abstract: A method of forming a light emitting device includes providing a sapphire substrate, growing an Al1−xGaxN first layer by vapor deposition on the substrate at a temperature between about 1000° C. and about 1180° C., and growing a III-nitride second layer overlying the first layer. The first layer may have a thickness between about 500 angstroms and about 5000 angstroms. In some embodiments, reaction between the group V precursor and the substrate is reduced by starting with a low molar ratio of group V precursor to group III precursor, then increasing the ratio during growth of the first layer, or by using nitrogen as an ambient gas.Type: ApplicationFiled: December 11, 2002Publication date: June 17, 2004Inventors: Junko Kobayashi, Werner K. Goetz
-
Publication number: 20040075097Abstract: P-type layers of a GaN based light-emitting device are optimized for formation of Ohmic contact with metal. In a first embodiment, a p-type GaN transition layer with a resistivity greater than or equal to about 7 &OHgr;cm is formed between a p-type conductivity layer and a metal contact. In a second embodiment, the p-type transition layer is any III-V semiconductor. In a third embodiment, the p-type transition layer is a superlattice. In a fourth embodiment, a single p-type layer of varying composition and varying concentration of dopant is formed.Type: ApplicationFiled: November 24, 2003Publication date: April 22, 2004Inventors: Werner K. Goetz, Michael D. Camras, Changhua Chen, Gina L. Christenson, R. Scott Kern, Chihping Kuo, Paul Scott Martin, Daniel A. Steigerwald
-
Patent number: 6657300Abstract: P-type layers of a GaN based light-emitting device are optimized for formation of Ohmic contact with metal. In a first embodiment, a p-type GaN transition layer with a resistivity greater than or equal to about 7 &OHgr;cm is formed between a p-type conductivity layer and a metal contact. In a second embodiment, the p-type transition layer is any III-V semiconductor. In a third embodiment, the p-type transition layer is a superlattice. In a fourth embodiment, a single p-type layer of varying composition and varying concentration of dopant is formed.Type: GrantFiled: January 5, 2001Date of Patent: December 2, 2003Assignee: Lumileds Lighting U.S., LLCInventors: Werner K. Goetz, Michael D. Camras, Changhua Chen, Gina L. Christenson, R. Scott Kern, Chihping Kuo, Paul Scott Martin, Daniel A. Steigerwald
-
Publication number: 20030205717Abstract: LEDs employing a III-Nitride light emitting active region deposited on a base layer above a substrate show improved optical properties with the base layer grown on an intentionally misaligned substrate with a thickness greater than 3.5 &mgr;m. Improved brightness, improved quantum efficiency, and a reduction in the current at which maximum quantum efficiency occurs are among the improved optical properties resulting from use of a misaligned substrate and a thick base layer. Illustrative examples are given of misalignment angles in the range from 0.05° to 0.50°, and base layers in the range from 6.5 to 9.5 &mgr;m although larger values of both misalignment angle and base layer thickness can be used. In some cases, the use of thicker base layers provides sufficient structural support to allow the substrate to be removed from the device entirely.Type: ApplicationFiled: May 29, 2003Publication date: November 6, 2003Inventors: Reena Khare, Werner K. Goetz, Michael D. Camras