Patents by Inventor Werner K. Goetz

Werner K. Goetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220313851
    Abstract: A decontamination apparatus for disinfecting a surface can include a flexible textile, an array of LEDs, and a flexible cover layer. The flexible textile can have a first side facing a first direction and a second side facing a second direction opposite the first direction. The array of LEDs can be configured to output radiation in at least two separate wavelength ranges corresponding to an ultraviolet radiation range and an infrared radiation range. The flexible cover layer can cover the array of LEDs and be transparent to at least the ultraviolet radiation range. The flexible cover layer can comprise a plurality of projections configured to maintain a consistent distance between the array of LEDs and a surface to be disinfected. The flexible textile, the array of LEDs, and the flexible cover layer can be coupled together to form a flexible blanket that conforms to a contour of the surface.
    Type: Application
    Filed: June 21, 2022
    Publication date: October 6, 2022
    Applicant: LUMAEGIS, INC.
    Inventors: Sudhir SUBRAMANYA, John S. MORREALE, Werner K. GOETZ, Matthijs Hendrik KEUPER
  • Patent number: 7951693
    Abstract: In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane?abulk)|/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: May 31, 2011
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Patrick N. Grillot, Nathan F. Gardner, Werner K. Goetz, Linda T. Romano
  • Publication number: 20110121358
    Abstract: A semiconductor structure includes a light emitting region, a p-type region disposed on a first side of the light emitting region, and an n-type region disposed on a second side of the light emitting region. At least 10% of a thickness of the semiconductor structure on the first side of the light emitting region comprises indium. Some examples of such a semiconductor light emitting device may be formed by growing an n-type region, growing a p-type region, and growing a light emitting layer disposed between the n-type region and the p-type region. The difference in temperature between the growth temperature of a part of the n-type region and the growth temperature of a part of the p-type region is at least 140° C.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 26, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: JUNKO KOBAYASHI, WERNER K. GOETZ, ANNELI MUNKHOLM
  • Patent number: 7906357
    Abstract: A semiconductor structure includes a light emitting region, a p-type region disposed on a first side of the light emitting region, and an n-type region disposed on a second side of the light emitting region. At least 10% of a thickness of the semiconductor structure on the first side of the light emitting region comprises indium. Some examples of such a semiconductor light emitting device may be formed by growing an n-type region, growing a p-type region, and growing a light emitting layer disposed between the n-type region and the p-type region. The difference in temperature between the growth temperature of a part of the n-type region and the growth temperature of a part of the p-type region is at least 140° C.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: March 15, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Junko Kobayashi, Werner K. Goetz, Anneli Munkholm
  • Patent number: 7880186
    Abstract: In a device, a III-nitride light emitting layer is disposed between an n-type region and a p-type region. A first spacer layer, which is disposed between the n-type region and the light emitting layer, is doped to a dopant concentration between 6×1018 cm?3 and 5×1019 cm?3. A second spacer layer, which is disposed between the p-type region and the light emitting layer, is not intentionally doped or doped to a dopant concentration less than 6×1018 cm?3.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: February 1, 2011
    Assignees: Koninklijke Phllips Electronics N.V., Phillips Lumileds Lighting Company, LLC
    Inventors: Nathan F. Gardner, Gangyi Chen, Werner K. Goetz, Michael R. Krames, Gerd O. Mueller, Yu-Chen Shen, Satoshi Watanabe
  • Patent number: 7547908
    Abstract: In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane?abulk)|/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: June 16, 2009
    Assignee: Philips Lumilieds Lighting Co, LLC
    Inventors: Patrick N. Grillot, Nathan F. Gardner, Werner K. Goetz, Linda T. Romano
  • Patent number: 7534638
    Abstract: In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane?abulk)|/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: May 19, 2009
    Assignee: Philips Lumiled Lighting Co., LLC
    Inventors: Patrick N. Grillot, Nathan F. Gardner, Werner K. Goetz, Linda T. Romano
  • Publication number: 20080153191
    Abstract: In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane?abulk)/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Applicant: PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Patrick N. Grillot, Nathan F. Gardner, Werner K. Goetz, Linda T. Romano
  • Publication number: 20080153192
    Abstract: In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane?abulk)/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Applicant: PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Patrick N. Grillot, Nathan F. Gardner, Werner K. Goetz, Linda T. Romano
  • Publication number: 20080149961
    Abstract: In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane?abulk)/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Applicant: PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Patrick N. Grillot, Nathan F. Gardner, Werner K. Goetz, Linda T. Romano
  • Patent number: 7345323
    Abstract: P-type layers of a GaN based light-emitting device are optimized for formation of Ohmic contact with metal. In a first embodiment, a p-type GaN transition layer with a resistivity greater than or equal to about 7 ? cm is formed between a p-type conductivity layer and a metal contact. In a second embodiment, the p-type transition layer is any III-V semiconductor. In a third embodiment, the p-type transition layer is a superlattice. In a fourth embodiment, a single p-type layer of varying composition and varying concentration of dopant is formed.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: March 18, 2008
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Werner K. Goetz, Michael D. Camras, Xiaoping Chen, legal representative, Gina L. Christenson, R. Scott Kern, Chihping Kuo, Paul Scott Martin, Daniel A. Steigerwald, Changhua Chen
  • Patent number: 7345324
    Abstract: A light emitting device in accordance with an embodiment of the present invention includes a first semiconductor layer of a first conductivity type having a first surface, and an active region formed overlying the first semiconductor layer. The active region includes a second semiconductor layer which is either a quantum well layer or a barrier layer. The second semiconductor layer is formed from a semiconductor alloy having a composition graded in a direction substantially perpendicular to the first surface of the first semiconductor layer. The light emitting device also includes a third semiconductor layer of a second conductivity type formed overlying the active region.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: March 18, 2008
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: David P. Bour, Nathan F. Gardner, Werner K. Goetz, Stephen A. Stockman, Tetsuya Takeuchi, Ghulam Hasnain, Christopher P. Kocot, Mark R. Hueschen
  • Patent number: 6989555
    Abstract: In a III-nitride light emitting device, a ternary or quaternary light emitting layer is configured to control the degree of phase separation. In some embodiments, the difference between the InN composition at any point in the light emitting layer and the average InN composition in the light emitting layer is less than 20%. In some embodiments, control of phase separation is accomplished by controlling the ratio of the lattice constant in a relaxed, free standing layer having the same composition as the light emitting layer to the lattice constant in a base region. For example, the ratio may be between about 1 and about 1.01.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: January 24, 2006
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Werner K. Goetz, Michael R. Krames, Anneli Munkholm
  • Patent number: 6955933
    Abstract: A light emitting device in accordance with an embodiment of the present invention includes a first semiconductor layer of a first conductivity type having a first surface, and an active region formed overlying the first semiconductor layer. The active region includes a second semiconductor layer which is either a quantum well layer or a barrier layer. The second semiconductor layer is formed from a semiconductor alloy having a composition graded in a direction substantially perpendicular to the first surface of the first semiconductor layer. The light emitting device also includes a third semiconductor layer of a second conductivity type formed overlying the active region.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: October 18, 2005
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: David P. Bour, Nathan F. Gardner, Werner K. Goetz, Stephen A. Stockman, Tetsuya Takeuchi, Ghulam Hasnain, Christopher P. Kocot, Mark R. Hueschen
  • Patent number: 6914272
    Abstract: P-type layers of a GaN based light-emitting device are optimized for formation of Ohmic contact with metal. In a first embodiment, a p-type GaN transition layer with a resistivity greater than or equal to about 7 ?cm is formed between a p-type conductivity layer and a metal contact. In a second embodiment, the p-type transition layer is any III-V semiconductor. In a third embodiment, the p-type transition layer is a superlattice. In a fourth embodiment, a single p-type layer of varying composition and varying concentration of dopant is formed.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: July 5, 2005
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Werner K. Goetz, Michael D. Camras, Changhua Chen, Gina L. Christenson, R. Scott Kern, Chihping Kuo, Paul Scott Martin, Daniel A. Steigerwald
  • Patent number: 6900067
    Abstract: A method of forming a light emitting device includes providing a sapphire substrate, growing an Al1?xGaxN first layer by vapor deposition on the substrate at a temperature between about 1000° C. and about 1180° C., and growing a III-nitride second layer overlying the first layer. The first layer may have a thickness between about 500 angstroms and about 5000 angstroms. In some embodiments, reaction between the group V precursor and the substrate is reduced by starting with a low molar ratio of group V precursor to group III precursor, then increasing the ratio during growth of the first layer, or by using nitrogen as an ambient gas.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: May 31, 2005
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Junko Kobayashi, Werner K. Goetz
  • Publication number: 20040115853
    Abstract: A method of forming a light emitting device includes providing a sapphire substrate, growing an Al1−xGaxN first layer by vapor deposition on the substrate at a temperature between about 1000° C. and about 1180° C., and growing a III-nitride second layer overlying the first layer. The first layer may have a thickness between about 500 angstroms and about 5000 angstroms. In some embodiments, reaction between the group V precursor and the substrate is reduced by starting with a low molar ratio of group V precursor to group III precursor, then increasing the ratio during growth of the first layer, or by using nitrogen as an ambient gas.
    Type: Application
    Filed: December 11, 2002
    Publication date: June 17, 2004
    Inventors: Junko Kobayashi, Werner K. Goetz
  • Publication number: 20040075097
    Abstract: P-type layers of a GaN based light-emitting device are optimized for formation of Ohmic contact with metal. In a first embodiment, a p-type GaN transition layer with a resistivity greater than or equal to about 7 &OHgr;cm is formed between a p-type conductivity layer and a metal contact. In a second embodiment, the p-type transition layer is any III-V semiconductor. In a third embodiment, the p-type transition layer is a superlattice. In a fourth embodiment, a single p-type layer of varying composition and varying concentration of dopant is formed.
    Type: Application
    Filed: November 24, 2003
    Publication date: April 22, 2004
    Inventors: Werner K. Goetz, Michael D. Camras, Changhua Chen, Gina L. Christenson, R. Scott Kern, Chihping Kuo, Paul Scott Martin, Daniel A. Steigerwald
  • Patent number: 6657300
    Abstract: P-type layers of a GaN based light-emitting device are optimized for formation of Ohmic contact with metal. In a first embodiment, a p-type GaN transition layer with a resistivity greater than or equal to about 7 &OHgr;cm is formed between a p-type conductivity layer and a metal contact. In a second embodiment, the p-type transition layer is any III-V semiconductor. In a third embodiment, the p-type transition layer is a superlattice. In a fourth embodiment, a single p-type layer of varying composition and varying concentration of dopant is formed.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: December 2, 2003
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Werner K. Goetz, Michael D. Camras, Changhua Chen, Gina L. Christenson, R. Scott Kern, Chihping Kuo, Paul Scott Martin, Daniel A. Steigerwald
  • Publication number: 20030205717
    Abstract: LEDs employing a III-Nitride light emitting active region deposited on a base layer above a substrate show improved optical properties with the base layer grown on an intentionally misaligned substrate with a thickness greater than 3.5 &mgr;m. Improved brightness, improved quantum efficiency, and a reduction in the current at which maximum quantum efficiency occurs are among the improved optical properties resulting from use of a misaligned substrate and a thick base layer. Illustrative examples are given of misalignment angles in the range from 0.05° to 0.50°, and base layers in the range from 6.5 to 9.5 &mgr;m although larger values of both misalignment angle and base layer thickness can be used. In some cases, the use of thicker base layers provides sufficient structural support to allow the substrate to be removed from the device entirely.
    Type: Application
    Filed: May 29, 2003
    Publication date: November 6, 2003
    Inventors: Reena Khare, Werner K. Goetz, Michael D. Camras