Patents by Inventor Wesley H. Morris

Wesley H. Morris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9201726
    Abstract: An example integrated circuit includes a first memory array including a first plurality of data groups, each such data group including a respective plurality of data bits. The integrated circuit also includes a first error detection and correction (EDAC) circuit configured to detect and correct an error in a data group read from the first memory array. The integrated circuit also includes a first scrub circuit configured to access in a sequence each of the first plurality of data groups to correct any detected errors therein. Both the first EDAC circuit and the first scrub circuit include spatially redundant circuitry. The first EDAC circuit and the first scrub circuit may include buried guard ring (BGR) structures, and may include parasitic isolation device (PID) structures. The spatially redundant circuitry may include dual interlocked storage cell (DICE) circuits, and may include temporal filtering circuitry.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: December 1, 2015
    Assignee: SILICON SPACE TECHNOLOGY CORPORATION
    Inventors: Wesley H. Morris, David R. Gifford, Rex E. Lowther
  • Publication number: 20150169400
    Abstract: An example integrated circuit includes a first memory array including a first plurality of data groups, each such data group including a respective plurality of data bits. The integrated circuit also includes a first error detection and correction (EDAC) circuit configured to detect and correct an error in a data group read from the first memory array. The integrated circuit also includes a first scrub circuit configured to access in a sequence each of the first plurality of data groups to correct any detected errors therein. Both the first EDAC circuit and the first scrub circuit include spatially redundant circuitry. The first EDAC circuit and the first scrub circuit may include buried guard ring (BGR) structures, and may include parasitic isolation device (PID) structures. The spatially redundant circuitry may include dual interlocked storage cell (DICE) circuits, and may include temporal filtering circuitry.
    Type: Application
    Filed: March 2, 2015
    Publication date: June 18, 2015
    Inventors: WESLEY H. MORRIS, DAVID R. GIFFORD, REX E. LOWTHER
  • Patent number: 8972819
    Abstract: An example integrated circuit includes a first memory array including a first plurality of data groups, each such data group including a respective plurality of data bits. The integrated circuit also includes a first error detection and correction (EDAC) circuit configured to detect and correct an error in a data group read from the first memory array. The integrated circuit also includes a first scrub circuit configured to access in a sequence each of the first plurality of data groups to correct any detected errors therein. Both the first EDAC circuit and the first scrub circuit include spatially redundant circuitry. The first EDAC circuit and the first scrub circuit may include buried guard ring (BGR) structures, and may include parasitic isolation device (PID) structures. The spatially redundant circuitry may include dual interlocked storage cell (DICE) circuits, and may include temporal filtering circuitry.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: March 3, 2015
    Assignee: Silicon Space Technology Corporation
    Inventors: Wesley H. Morris, David R. Gifford, Rex E. Lowther
  • Patent number: 8729640
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include the one or more parasitic isolation devices and/or buried guard ring structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: May 20, 2014
    Assignee: Silicon Space Technology Corporation
    Inventor: Wesley H. Morris
  • Publication number: 20130313620
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include the one or more parasitic isolation devices and/or buried guard ring structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 28, 2013
    Applicant: SILICON SPACE TECHNOLOGY CORPORATION
    Inventor: WESLEY H. MORRIS
  • Patent number: 8497195
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include the one or more parasitic isolation devices and/or buried guard ring structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: July 30, 2013
    Assignee: Silicon Space Technology Corporation
    Inventor: Wesley H. Morris
  • Publication number: 20130166990
    Abstract: An example integrated circuit includes a first memory array including a first plurality of data groups, each such data group including a respective plurality of data bits. The integrated circuit also includes a first error detection and correction (EDAC) circuit configured to detect and correct an error in a data group read from the first memory array. The integrated circuit also includes a first scrub circuit configured to access in a sequence each of the first plurality of data groups to correct any detected errors therein. Both the first EDAC circuit and the first scrub circuit include spatially redundant circuitry. The first EDAC circuit and the first scrub circuit may include buried guard ring (BGR) structures, and may include parasitic isolation device (PID) structures. The spatially redundant circuitry may include dual interlocked storage cell (DICE) circuits, and may include temporal filtering circuitry.
    Type: Application
    Filed: November 21, 2012
    Publication date: June 27, 2013
    Inventors: Wesley H. Morris, David R. Gifford, Rex E. Lowther
  • Publication number: 20130059421
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include one or more parasitic isolation devices and/or buried layer structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 7, 2013
    Inventor: Wesley H. Morris
  • Patent number: 8278719
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include one or more parasitic isolation devices and/or buried layer structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: October 2, 2012
    Assignee: Silicon Space Technology Corp.
    Inventor: Wesley H. Morris
  • Patent number: 8252642
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include one or more parasitic isolation devices and/or buried layer structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: August 28, 2012
    Assignee: Silicon Space Technology Corp.
    Inventor: Wesley H. Morris
  • Publication number: 20120108045
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include the one or more parasitic isolation devices and/or buried guard ring structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Application
    Filed: January 9, 2012
    Publication date: May 3, 2012
    Inventor: Wesley H. Morris
  • Patent number: 8093145
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include the one or more parasitic isolation devices and/or buried guard ring structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: January 10, 2012
    Assignee: Silicon Space Technology Corp.
    Inventor: Wesley H. Morris
  • Publication number: 20100267212
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include one or more parasitic isolation devices and/or buried layer structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Application
    Filed: November 30, 2009
    Publication date: October 21, 2010
    Inventor: Wesley H. Morris
  • Patent number: 7804138
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include the one or more parasitic isolation devices and/or buried guard ring structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: September 28, 2010
    Assignee: Silicon Space Technology Corp.
    Inventor: Wesley H. Morris
  • Patent number: 7629654
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include the one or more parasitic isolation devices and/or buried guard ring structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: December 8, 2009
    Assignee: Silicon Space Technology Corp.
    Inventor: Wesley H. Morris
  • Publication number: 20080188045
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include the one or more parasitic isolation devices and/or buried guard ring structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Application
    Filed: December 3, 2007
    Publication date: August 7, 2008
    Inventor: Wesley H. Morris
  • Publication number: 20080142899
    Abstract: Radiation hardened integrated circuit devices may be fabricated using conventional designs and process, but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. An exemplary BGR structure includes a high-dose buried guard ring (HBGR) layer which is contacted to ground through the backside of the wafer or circuit die, thus forming a Backside BGR (BBGR) structure. In certain embodiments, the starting wafer may be highly doped to reduce the resistance from the HBGR to the back of the wafer, which is then further contacted to ground through the package. The performance of such devices may be further improved by using an electrically conductive adhesive to attach the die and to electrically connect the silicon substrate region to the package's conductive header, substrate, or die attach pad, which in turn is typically connected to one or more package pins/balls.
    Type: Application
    Filed: August 4, 2007
    Publication date: June 19, 2008
    Applicant: SILICON SPACE TECHNOLOGY CORPORATION
    Inventors: Wesley H. Morris, Jon Gwin, Rex Lowther
  • Patent number: 7304354
    Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include the one or more parasitic isolation devices and/or buried guard ring structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: December 4, 2007
    Assignee: Silicon Space Technology Corp.
    Inventor: Wesley H. Morris
  • Patent number: 4662059
    Abstract: A MOS/SOI field-effect transistor is made by applying a layer of a photoresist over the surface of a single-crystalline silicon layer which is on a substrate of an insulating material, such as sapphire. The surface of the silicon layer is along a (100) crystallographic plane. The photoresist layer is defined to provide an area of the photoresist layer over the area of the silicon layer where the transistor is to be formed with the edges of the photoresist area being along the edges of (100) crystallographic planes which are perpendicular to the surface of the silicon layer. The portion of the silicon layer around the photoresist layer is etched with an anisotropic plasma etch which etches the silicon layer along the (100) crystallographic planes which are perpendicular to the surface of the silicon layer to form an island of the silicon.
    Type: Grant
    Filed: September 19, 1985
    Date of Patent: May 5, 1987
    Assignee: RCA Corporation
    Inventors: Ronald K. Smeltzer, Wesley H. Morris
  • Patent number: H1435
    Abstract: An SOI/SOS thin film MOS mesa architecture has its body/channel region extended beyond the source and drain regions and the impurity concentration is increased at a selected portion (e.g. an end portion) of the extended body region, so as to provide both a body tie access location which enables the body/channel region to be terminated to a prescribed bias voltage (e.g. Vss), and a channel stop region that is effective to functionally interrupt a current leakage path or `parasitic` N-channel that may be induced along sidewall surface of the P-type material of the body/channel region. In another embodiment, ionizing radiation-induced inversion of the sidewalls of the P-type body/channel region is prevented by an asymmetric sidewall channel stop structure formed in opposite end portions of the source region.
    Type: Grant
    Filed: October 21, 1991
    Date of Patent: May 2, 1995
    Inventors: Richard D. Cherne, Jack E. Clark, II, Glenn A. Dejong, Richard L. Lichtel, Wesley H. Morris, William H. Speece