Patents by Inventor Wesley J. Hawkinson

Wesley J. Hawkinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120209520
    Abstract: Embodiments of the present invention provide improved systems and methods for estimating N-dimensional parameters while sensing fewer than N dimensions. In one embodiment a navigational system comprises a processor and an inertial measurement unit (IMU) that provides an output to the processor, the processor providing a navigation solution based on the output of the IMU, wherein the navigation solution includes a calculation of an n-dimensional parameter. Further, the navigational system includes at most two sensors that provide an output to the processor, wherein the processor computes an estimate of an n-dimensional parameter from the output of the at most two sensors for bounding errors in the n-dimensional parameter as calculated by the processor when the trajectory measured by the IMU satisfies movement requirements, wherein ā€œnā€ is greater than the number of the at most two sensors.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 16, 2012
    Applicant: Honeywell International Inc.
    Inventors: Ryan Ingvalson, Wesley J. Hawkinson, Robert C. McCroskey, Paul Samanant
  • Publication number: 20120150441
    Abstract: Systems and methods for navigation using cross correlation on evidence grids are provided. In one embodiment, a system for using cross-correlated evidence grids to acquire navigation information comprises: a navigation processor coupled to an inertial measurement unit, the navigation processor configured to generate a navigation solution; a sensor configured to scan an environment; an evidence grid creator coupled to the sensor and the navigation processor, wherein the evidence grid creator is configured to generate a current evidence grid based on data received from the sensor and the navigation solution; a correlator configured to correlate the current evidence grid against a historical evidence grid stored in a memory to produce displacement information; and where the navigation processor receives correction data derived from correlation of evidence grids and adjusts the navigation solution based on the correction data.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 14, 2012
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Yunqian Ma, John B. McKitterick, Wesley J. Hawkinson
  • Publication number: 20120078510
    Abstract: A navigation device is provided herein comprising an inertial measurement unit (IMU), a camera, and a processor. The IMU provides an inertial measurement to the processor and the camera provides at least one image frame to the processor. The processor is configured to determine navigation data based on the inertial measurement and the at least one image frame, wherein at least one feature is extracted from the at least one image frame based on the navigation data.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Yunqian Ma, Wesley J. Hawkinson
  • Patent number: 8019542
    Abstract: A method of stabilizing heading in an inertial navigation system includes operating an inertial measurement unit comprising horizontal-sensing elements and off-horizontal-sensing elements while the inertial measurement unit is in a first orientation, calibrating the horizontal-sensing elements of the inertial measurement unit based on horizontal aiding measurements, forward-rotating the inertial measurement unit by a selected-rotation angle about a horizontal-rotation axis so that the inertial measurement unit is oriented in a second orientation, operating the forward-rotated inertial measurement unit while the inertial measurement unit is in the second orientation, and calibrating the rotated off-horizontal-sensing elements based on horizontal aiding measurements while the inertial measurement unit is in the second orientation. When the inertial measurement unit is in the first orientation, the horizontal-sensing elements are oriented in a horizontal reference plane.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: September 13, 2011
    Assignee: Honeywell International Inc.
    Inventors: Wesley J. Hawkinson, Tom Rolfer
  • Patent number: 7778111
    Abstract: A method for navigating underwater is disclosed. The method uses a navigation system to project a first velocity measurement along one or more signal beams having a second velocity measurement, where the second velocity measurement is related to at least one of the one or more signal beams. The method determines a position and location of an object associated with the navigation system based on a prediction of at least the second velocity measurement, and the navigation system is adjusted to perform within a prescribed measurement range based on a covariance of the first and second velocity measurements. The performance adjustments made in determining the position and location of the object are operable independent of the navigation system maintaining each of the signal beams due to one or more external environmental conditions.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: August 17, 2010
    Assignee: Honeywell International Inc.
    Inventors: Wesley J. Hawkinson, Kevin Sweeney, Randolph G. Hartman
  • Publication number: 20090238042
    Abstract: A method for navigating underwater is disclosed. The method uses a navigation system to project a first velocity measurement along one or more signal beams having a second velocity measurement, where the second velocity measurement is related to at least one of the one or more signal beams. The method determines a position and location of an object associated with the navigation system based on a prediction of at least the second velocity measurement, and the navigation system is adjusted to perform within a prescribed measurement range based on a covariance of the first and second velocity measurements. The performance adjustments made in determining the position and location of the object are operable independent of the navigation system maintaining each of the signal beams due to one or more external environmental conditions.
    Type: Application
    Filed: March 19, 2008
    Publication date: September 24, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Wesley J. Hawkinson, Kevin Sweeney, Randolph G. Hartman
  • Patent number: 7522090
    Abstract: Systems and methods for terrain contour matching navigation are provided. In one embodiment, a method for terrain contour matching navigation comprises: receiving at least one sample point representing the position of an aircraft, the at least one sample point including a horizontal position and an altitude sample; correlating a first sample point of the at least one sample point across a reference basket array having a plurality of elements; determining a correlation quality; when the correlation quality does not achieve a pre-determined quality threshold, performing at least one additional correlation of an additional sample point of the at least one sample point across the reference basket array; and when the correlation quality does achieve a pre-determined quality threshold, calculating a position error based on the correlating of the first sample point and any additional correlations of any additional sample points.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: April 21, 2009
    Assignee: Honeywell International Inc.
    Inventor: Wesley J. Hawkinson
  • Publication number: 20080319667
    Abstract: A method of stabilizing heading in an inertial navigation system is provided. The method includes operating an inertial measurement unit comprising horizontal-sensing elements and off-horizontal-sensing elements while the inertial measurement unit is in a first orientation, calibrating the horizontal-sensing elements of the inertial measurement unit based on horizontal aiding measurements, forward-rotating the inertial measurement unit by a selected-rotation angle about a horizontal-rotation axis so that the inertial measurement unit is oriented in a second orientation, operating the forward-rotated inertial measurement unit while the inertial measurement unit is in the second orientation, and calibrating the rotated off-horizontal-sensing elements based on horizontal aiding measurements while the inertial measurement unit is in the second orientation. When the inertial measurement unit is in the first orientation, the horizontal-sensing elements are oriented in a horizontal reference plane.
    Type: Application
    Filed: March 31, 2008
    Publication date: December 25, 2008
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Wesley J. Hawkinson, Tom Rolfer
  • Patent number: 7421343
    Abstract: Systems and methods for reducing vibration-induced bias errors in inertial sensors are disclosed. A system for reducing bias errors in an inertial sensor operating within an environment may include a vibration detector for sensing vibration changes within the environment proximate to the inertial sensor, and a Kalman filter for computing an estimate of the navigational error produced by the inertial sensor due to a vibration-induced bias shift detected by the vibration detector. The vibration detector can be configured to measure an accelerometer output of the inertial sensor over a Kalman filter cycle, and then use the standard deviation of such output to obtain a statistical measure of the vibration within the environment. In some embodiments, the inertial sensor may include an inertial measurement unit (IMU) connected to an error compensation unit and strapdown navigator, each of which can be fed navigation corrections determined by the Kalman filter.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: September 2, 2008
    Assignee: Honeywell International Inc.
    Inventor: Wesley J. Hawkinson
  • Publication number: 20080169964
    Abstract: Systems and methods for terrain contour matching navigation are provided. In one embodiment, a method for terrain contour matching navigation comprises: receiving at least one sample point representing the position of an aircraft, the at least one sample point including a horizontal position and an altitude sample; correlating a first sample point of the at least one sample point across a reference basket array having a plurality of elements; determining a correlation quality; when the correlation quality does not achieve a pre-determined quality threshold, performing at least one additional correlation of an additional sample point of the at least one sample point across the reference basket array; and when the correlation quality does achieve a pre-determined quality threshold, calculating a position error based on the correlating of the first sample point and any additional correlations of any additional sample points.
    Type: Application
    Filed: October 31, 2006
    Publication date: July 17, 2008
    Applicant: Honeywell Inernational Inc.
    Inventor: Wesley J. Hawkinson
  • Patent number: 7305303
    Abstract: A navigation system includes an inertial navigation unit. The navigation system also includes a Kalman filter that generates corrective feedback for use by the inertial navigation unit. The Kalman filter generates the corrective feedback as a function of at least one of GPS/DGPS information, sensor information, user input, terrain correlation information, signal-of-opportunity information, and/or position information output by a motion classifier.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: December 4, 2007
    Assignee: Honeywell International Inc.
    Inventors: Wayne A. Soehren, Charles T. Bye, Wesley J. Hawkinson