Patents by Inventor Wesley R. Poth
Wesley R. Poth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20190195321Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: ApplicationFiled: July 30, 2018Publication date: June 27, 2019Inventors: Robert A. Smithson, Brad P. Pohl, Oronde J. Armstrong, Donald C. Miller, Daniel J. Dawe, Fernand A. Thomassy, Matthew P. Simister, Wesley R. Poth, Jon M. Nichols, Charles B. Lohr
-
Patent number: 10036453Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: GrantFiled: December 29, 2014Date of Patent: July 31, 2018Assignee: Fallbrook Intellectual Property Company LLCInventors: Robert A. Smithson, Brad P. Pohl, Oronde J. Armstrong, Donald C. Miller, Daniel J. Dawe, Fernand A. Thomassy, Matthew P. Simister, Wesley R. Poth, Jon M. Nichols, Charles B. Lohr
-
Publication number: 20150337928Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: ApplicationFiled: December 29, 2014Publication date: November 26, 2015Inventors: Robert A. Smithson, Brad P. Pohl, Oronde J. Armstrong, Donald C. Miller, Daniel J. Dawe, Fernand A. Thomassy, Matthew P. Simister, Wesley R. Poth, Jon M. Nichols, Charles B. Lohr
-
Patent number: 8920285Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: GrantFiled: December 10, 2012Date of Patent: December 30, 2014Assignee: Fallbrook Intellectual Property Company LLCInventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Mathew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
-
Patent number: 8171636Abstract: A continuously variable transmission has a number of tiltable ball-leg assemblies configured angularly about a longitudinal axis. Each ball-leg assembly is in contact with, and guided through a tilting motion by an axially translating shift cam having a convex shape. The convex shape of the shift cam can have a profile defined by a set of parametric equations. The profile of the shift cam can vary according to the location of the contact point between an idler and the ball-leg assembly as well as the amount of relative axial motion between the ball-leg assembly and the idler. The profile of the shift cam can be configured to control the axial translation of the idler relative to the change in tilt angle of the ball-leg assembly. A roll-slide factor can be used to characterize the axial translation of the idler relative to the tilt angle of the ball-leg assembly.Type: GrantFiled: August 20, 2007Date of Patent: May 8, 2012Assignee: Fallbrook Technologies Inc.Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
-
Patent number: 8133149Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: GrantFiled: August 20, 2007Date of Patent: March 13, 2012Assignee: Fallbrook Technologies Inc.Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
-
Patent number: 8123653Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: GrantFiled: August 20, 2007Date of Patent: February 28, 2012Assignee: Fallbrook Technologies Inc.Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
-
Patent number: 8066613Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: GrantFiled: August 20, 2007Date of Patent: November 29, 2011Assignee: Fallbrook Technologies Inc.Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
-
Patent number: 7976426Abstract: A continuously variable transmission (CVT) having a number of tiltable ball-leg assemblies configured angularly about a longitudinal axis. Each ball-leg assembly is in contact with, and guided through a tilting motion by an axially translating shift cam having a convex shape. The convex shape of the shift cam can have a profile defined by a set of parametric equations. In one embodiment, the profile of the shift cam vary according to the location of the contact point between an idler and the ball-leg assembly as well as the amount of relative axial motion between the ball-leg assembly and the idler. In some embodiments, the profile of the shift cam can be configured to control the axial translation of the idler relative to the change in tilt angle of the ball-leg assembly. In other embodiments, a roll-slide factor can be used to characterize the axial translation of the idler relative to the tilt angle of the ball-leg assembly.Type: GrantFiled: August 20, 2007Date of Patent: July 12, 2011Assignee: Fallbrook Technologies Inc.Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
-
Patent number: 7967719Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: GrantFiled: August 20, 2007Date of Patent: June 28, 2011Assignee: Fallbrook Technologies Inc.Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
-
Patent number: 7963880Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: GrantFiled: August 20, 2007Date of Patent: June 21, 2011Assignee: Fallbrook Technologies Inc.Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
-
Patent number: 7909727Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: GrantFiled: August 20, 2007Date of Patent: March 22, 2011Assignee: Fallbrook Technologies Inc.Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
-
Patent number: 7785228Abstract: A continuously variable transmission (CVT) having a torsion disc for a CVT. The torsion disc includes a splined bore about its central axis, an annular recess formed in the disc for receiving the race of a bearing, and a raised surface for supporting a torsion spring. In one embodiment, the torsion disc includes a number of holes for receiving dowels that support a torsion spring. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: GrantFiled: August 20, 2007Date of Patent: August 31, 2010Assignee: Fallbrook Technologies Inc.Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
-
Patent number: 7762919Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: GrantFiled: October 4, 2005Date of Patent: July 27, 2010Assignee: Fallbrook Technologies Inc.Inventors: Robert A. Smithson, Brad P. Pohl, Oronde J. Armstrong, Donald C. Miller, Daniel J. Dawe, Fernand A. Thomassy, Matthew P. Simister, Wesley R. Poth, Jon M. Nichols, Charles B. Lohr
-
Patent number: 7762920Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: GrantFiled: August 20, 2007Date of Patent: July 27, 2010Assignee: Fallbrook Technologies Inc.Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
-
Publication number: 20080200300Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.Type: ApplicationFiled: August 20, 2007Publication date: August 21, 2008Applicant: FALLBROOK TECHNOLOGIES INC.Inventors: Robert A. Smithson, Brad P. Pohl, Oronde J. Armstrong, Donald C. Miller, Daniel J. Dawe, Fernand A. Thomassy, Matthew P. Simister, Wesley R. Poth, Jon M. Nichols, Charles B. Lohr