Patents by Inventor Wesley S. Hackenberger

Wesley S. Hackenberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11486055
    Abstract: A relaxor-PT based piezoelectric crystal is disclosed, comprising the general formula of (Pb1-1.5xMx){[(MI,MII)1-z(MI?,MII?)z]1-yTiy}O3, wherein: M is a rare earth cation; MI is selected from the group consisting of Mg2+, Zn2+, Yb3+, Sc3+, and In3+; MII is Nb5+; MI? is selected from the group consisting of Mg2+, Zn2+, Yb3+, Sc3+, In3+, and Zr4; MII? is Nb5+ or Zr4+; 0<x?0.05; 0.02<y<0.7; and 0?z?1, provided that if either MI? or MII? is Zr4+, both MI? and MII? are Zr4+. A method for forming the relaxor-PT based piezoelectric crystal is disclosed, comprising pre-synthesizing precursor materials by calcining mixed oxides, mixing the precursor materials with single oxides and calcining to form a feeding material, and growing the relaxor-PT based piezoelectric crystal having the general formula of (Pb1-1.5xMx){[(MI,MII)1-z(MI?,MII?)z]1-yTiy}O3 from the feeding material by a Bridgman method.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: November 1, 2022
    Assignees: TRS TECHNOLOGIES, INC., THE PENN STATE RESEARCH FOUNDATION
    Inventors: Jun Luo, Wesley S. Hackenberger, Fei Li, Shujun Zhang, Thomas R. Shrout
  • Patent number: 9673380
    Abstract: The application is directed to piezoelectric single crystals having shear piezoelectric coefficients with enhanced temperature and/or electric field stability. These piezoelectric single crystal may be used, among other things, for vibration sensors as well as low frequency, compact sonar transducers with improved and/or enhanced performance.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: June 6, 2017
    Inventors: Wesley S. Hackenberger, Jun Luo, Shujun Zhang, Fei Li, Thomas R. Shrout, Kevin A. Snook, Raffi Sahul
  • Patent number: 9070865
    Abstract: A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d32 transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the <110> family and resonance direction is the <001> family.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: June 30, 2015
    Inventors: Kevin A. Snook, Yu Liang, Jun Luo, Wesley S. Hackenberger, Raffi Sahul
  • Patent number: 8907546
    Abstract: The application is directed to piezoelectric single crystals having shear piezoelectric coefficients with enhanced temperature and/or electric field stability. These piezoelectric single crystal may be used, among other things, for vibration sensors as well as low frequency, compact sonar transducers with improved and/or enhanced performance.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: December 9, 2014
    Inventors: Wesley S. Hackenberger, Jun Luo, Thomas R. Shrout, Kevin A. Snook, Shujun Zhang, Fei Li, Raffi Sahul
  • Patent number: 8894765
    Abstract: A PIN-PMN-PT ferroelectric single crystal and a method of manufacture are disclosed. The PIN-PMN-PT ferroelectric single crystal is oriented and polarized along a single crystallographic direction. The PIN-PMN-PT ferroelectric single crystal ferroelectric has increased remnant polarization.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: November 25, 2014
    Assignee: TRS Technologies, Inc.
    Inventors: Wesley S. Hackenberger, Edward F. Alberta
  • Patent number: 8821748
    Abstract: A ceramic or single crystal ferroelectric and a method of manufacture are disclosed. The ceramics and single crystals of the present disclosure are located near phase boundaries between ferroelectric and antiferroelectric phases. These ceramics, single crystals, and composite may be used in pulsed power applications.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: September 2, 2014
    Assignee: TRS Technologies, Inc.
    Inventors: Wesley S. Hackenberger, Edward F. Alberta
  • Patent number: 8241519
    Abstract: A <110> domain engineered relaxor-PT single crystals having a dielectric loss of about 0.2%, a high electromechanical coupling factor greater than about 85%, and high mechanical quality factor greater than about 500 is disclosed. In one embodiment, the relaxor-PT material has the general formula, Pb(B1B2)O3—Pb(B3)O3, where B1 may be one ion or combination of Mg2+, Zn2+, Ni2+, Sc3+, In3+, Yb3+, B2 may be one ion or combination of Nb5+, Ta5+, W6+, and B3 may be Ti4+ or combination of Ti4+ with Zr4+ and/or Hf4+.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: August 14, 2012
    Assignees: TRS Technologies, Inc., Penn State Research Foundation
    Inventors: Jun Luo, Wesley S. Hackenberger, Shujun Zhang, Richard J. Meyer, Jr., Thomas R. Shrout, Nevin P. Sherlock
  • Patent number: 8148877
    Abstract: A piezoelectric composite micromachined ultrasound transducer including single and multilayer 1-D and 2-D arrays having through-wafer-vias (TWVs) that significantly decreased electrical impedance per element, and hence the improved electrical impedance matching to T/R electronics and improved signal to noise ratio is disclosed. The TWVs facilitate integrated interconnection in single element transducers (positive and negative contact on the same side) and array transducers (contact pads array for integration with T/R switches and/or pre-amplifier circuits).
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: April 3, 2012
    Assignee: TRS Technologies, Inc.
    Inventors: Xiaoning Jiang, Wesley S. Hackenberger, Kevin A. Snook
  • Patent number: 8008842
    Abstract: A piezoelectric composite micromachined ultrasound transducer including single and multilayer 1-D and 2-D arrays having through-wafer-vias (TWVs) that significantly decreased electrical impedance per element, and hence the improved electrical impedance matching to T/R electronics and improved signal to noise ratio is disclosed. The TWVs facilitate integrated interconnection in single element transducers (positive and negative contact on the same side) and array transducers (contact pads array for integration with T/R switches and/or pre-amplifier circuits).
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: August 30, 2011
    Assignee: TRS Technologies, Inc.
    Inventors: Xiaoning Jiang, Wesley S. Hackenberger, Kevin A. Snook
  • Patent number: 7972527
    Abstract: A ternary single crystal relaxor piezoelectric grown from a novel melt using the Vertical Bridgeman method. The ternary single crystals are characterized by a Curie temperature, Tc, of at least 150° C. and a rhombohedral to tetragonal phase transition temperature, Trt, of at least about 110° C. The ternary crystals further exhibit a piezoelectric coefficient, d33, in the range of at least about 1200-2000 pC/N.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: July 5, 2011
    Assignee: TRS Technologies, Inc.
    Inventors: Jun Luo, Wesley S. Hackenberger
  • Patent number: 7969073
    Abstract: A tangentially poled piezoelectric single crystal ring resonator is disclosed. A single crystal material is machined into elements and formed into a ring structure. The single crystal elements have a <110> poled tangential axis. The elements may also have a <211>, <511> or <322> orientation range in the radial direction. The elements may have a generally wedge shape.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: June 28, 2011
    Assignee: TRS Technologies, Inc.
    Inventors: Wesley S. Hackenberger, Kevin A. Snook
  • Patent number: 7884042
    Abstract: An antiferroelectric ceramic material that can be formed into a multilayer capacitor is disclosed. The antiferroelectric ceramic material is selected from the Pb(Sn, Zr, Ti)O3 (PSnZT) composition family.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: February 8, 2011
    Assignee: TRS Technologies, Inc.
    Inventors: Wesley S. Hackenberger, Seongtae Kwon
  • Patent number: 7781358
    Abstract: An antiferroelectric ceramic material that can be formed into a multilayer capacitor is disclosed. The antiferroelectric ceramic material is selected from the Pb(Sn, Zr, Ti)O3 (PSnZT) composition family.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: August 24, 2010
    Assignee: TRS Technologies, Inc.
    Inventors: Wesley S. Hackenberger, Seongtae Kwon
  • Publication number: 20100076318
    Abstract: The present invention generally relates to medical devices, and more particularly to an improved medical imaging device. In one embodiment, an imaging device includes a drive shaft having proximal and distal ends received within the lumen; and an imaging transducer assembly. coupled to the distal end of the drive shaft and positioned at the distal portion of the elongate member. The imaging transducer assembly includes one or more imaging transducers formed with a piezoelectric composite plate using photolithography based micromachining.
    Type: Application
    Filed: October 29, 2009
    Publication date: March 25, 2010
    Applicant: SciMed Life Systems, Inc.
    Inventors: Paul W. Rehrig, Xiaoning Jiang, Wesley S. Hackenberger, Jian R. Yuan, Richard Romley
  • Patent number: 7622853
    Abstract: The present invention generally relates to medical devices, and more particularly to an improved medical imaging device. In one embodiment, an imaging device includes a drive shaft having proximal and distal ends received within the lumen; and an imaging transducer assembly coupled to the distal end of the drive shaft and positioned at the distal portion of the elongate member. The imaging transducer assembly includes one or more imaging transducers formed with a piezoelectric composite plate using photolithography based micromachining.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: November 24, 2009
    Assignee: SciMed Life Systems, Inc.
    Inventors: Paul W. Rehrig, Xiaoning Jiang, Wesley S. Hackenberger, Jian R. Yuan, Richard Romley
  • Publication number: 20090029295
    Abstract: The present invention generally relates to medical devices, and more particularly to an improved medical imaging device. In one embodiment, an imaging device includes a drive shaft having proximal and distal ends received within the lumen; and an imaging transducer assembly coupled to the distal end of the drive shaft and positioned at the distal portion of the elongate member. The imaging transducer assembly includes one or more imaging transducers formed with a piezoelectric composite plate using photolithography based micromachining.
    Type: Application
    Filed: October 6, 2008
    Publication date: January 29, 2009
    Inventors: Paul W. Rehrig, Xiaoning Jiang, Wesley S. Hackenberger
  • Patent number: 7446459
    Abstract: A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: November 4, 2008
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administrator of NASA
    Inventors: Tian-Bing Xu, Xiaoning Jiang, Ji Su, Paul W. Rehrig, Wesley S. Hackenberger
  • Publication number: 20080238260
    Abstract: A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.
    Type: Application
    Filed: July 13, 2006
    Publication date: October 2, 2008
    Applicants: National Institute of Aerospace Associates
    Inventors: Tian-Bing Xu, Xiaoning Jiang, Ji Su, Paul W. Rehrig, Wesley S. Hackenberger
  • Patent number: 6034015
    Abstract: A composition of Ba.sub.2 Ti.sub.9 O.sub.20 suitable for use in microwave wireless communications is provided. Ba.sub.2 Ti.sub.9 O.sub.20 doped with Zr is formed by combining starting materials containing barium, titanium and zirconium. In a preferred embodiment of the invention, zirconium-doped Ba.sub.2 Ti.sub.9 O.sub.20 is formed by combining BaCO.sub.3 and TiO.sub.2, and substituting an appropriate amount of ZrO.sub.2 for a portion of the TiO.sub.2. The relative proportion of Ba.sub.2 Ti.sub.9 O.sub.20 obtained as a result is increased over that which may be obtained using other dopants, such as tin (Sn). Forming Ba.sub.2 Ti.sub.9 O.sub.20 with a Zr dopant in the appropriate amount also results in greater stability of the dielectric constant, an increase in the quality factor, and a decrease in the temperature coefficient than exhibited by other compositions of Ba.sub.2 Ti.sub.9 O.sub.20 that lack a Zr dopant.
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: March 7, 2000
    Assignee: Georgia Tech Research Corporation
    Inventors: Wen-Yi Lin, Robert F. Speyer, Tom R. Shrout, Wesley S. Hackenberger