Patents by Inventor Westley S. Ashe

Westley S. Ashe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240108418
    Abstract: A magnetic tracking device includes a sensor configured to generate a sensor electromotive force (EMF). The device includes a mechanism configured to select between a first operating mode in which the sensor generates the sensor EMF when receiving the magnetic field and a second operating mode in which the sensor generates a reduced amount of the sensor EMF when receiving the magnetic field. An interconnecting circuit generates a parasitic EMF in each of the first operating mode and the second operating mode. The interconnecting circuit connects to a processing device which receives a first measurement for the first operating mode, the first measurement representing the sensor EMF and the parasitic EMF, receives a second measurement for the second operating mode, the second measurement representing the parasitic EMF, compares the first measurement and the second measurement, and determines an approximate value of the sensor EMF.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Westley S. Ashe, Georg Brunner
  • Patent number: 11883115
    Abstract: A magnetic tracking device includes a sensor configured to generate a sensor electromotive force (EMF). The device includes a mechanism configured to select between a first operating mode in which the sensor generates the sensor EMF when receiving the magnetic field and a second operating mode in which the sensor generates a reduced amount of the sensor EMF when receiving the magnetic field. An interconnecting circuit generates a parasitic EMF in each of the first operating mode and the second operating mode. The interconnecting circuit connects to a processing device which receives a first measurement for the first operating mode, the first measurement representing the sensor EMF and the parasitic EMF, receives a second measurement for the second operating mode, the second measurement representing the parasitic EMF, compares the first measurement and the second measurement, and determines an approximate value of the sensor EMF.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: January 30, 2024
    Assignee: Northern Digital, Inc.
    Inventors: Westley S. Ashe, Georg Brunner
  • Patent number: 11612086
    Abstract: An electromagnetic tracking system includes a magnetic transmitter configured to output magnetic fields, a receiver responsive to the magnetic fields, an electronics assembly having conductive elements that cause distortion to the magnetic fields, and an output mechanism configured to output a position of the receiver relative to the magnetic transmitter, wherein the magnetic transmitter has at least one winding disposed around a hollow ferromagnetic core comprised of conductive material through which current is made to flow by the electronics, wherein the electronics assembly is at least partially contained within the hollow portion of the hollow ferromagnetic core. Methods of manufacturing include shaping walls into a hollow shell to surround an electronics assembly, covering the hollow shell with ferromagnetic material, inserting the wrapped hollow shell into a plastic bobbin, and winding the plastic bobbin with coil wire to produce three orthogonal windings.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: March 21, 2023
    Assignee: Northern Digital Inc.
    Inventors: Westley S. Ashe, Richard van Wijngaarden, Andrew Wiles
  • Publication number: 20220280060
    Abstract: An electromagnetic tracking (EMT) system is configured for determining a frequency for generating at least a portion of a magnetic field signal using a transmitter coil of a plurality of transmitter coils. The EMT system configures a time-division multiplexed (TDM) control signal configured to cause the transmitter coil to transmit bursts of the magnetic field signal at the frequency. The EMT system configures a filter for filtering the TDM control signal, the filter configured to shape each burst to reduce or eliminate a harmonic artifact of the bursts. The EMT system causes the transmitter coil to generate the shaped bursts of the magnetic field signal. The EMT system receives, from a sensor, a sensor signal that corresponds to the magnetic field signal, the sensor including the output response indicative of the location of the sensor relative to the transmitter.
    Type: Application
    Filed: March 3, 2022
    Publication date: September 8, 2022
    Inventors: Westley S. Ashe, William Petrow
  • Patent number: 11397220
    Abstract: A system is configured to model a magnetic field by measuring a first value for characteristics of a magnetic field at a first position in the magnetic field. The system measures a second value characteristics of the magnetic field at a second position in the magnetic field. The system determines a distance between the first position and the second position. The system estimates a distortion component of the magnetic field at approximately the second position in the magnetic field based on each of the distance, the first value for each of the one or more characteristics, and the second value for each of the one or more characteristics. The system outputs a model of at least a region of the magnetic field.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: July 26, 2022
    Assignee: Northern Digital Inc.
    Inventor: Westley S. Ashe
  • Publication number: 20210386486
    Abstract: A magnetic tracking device includes a sensor configured to generate a sensor electromotive force (EMF). The device includes a mechanism configured to select between a first operating mode in which the sensor generates the sensor EMF when receiving the magnetic field and a second operating mode in which the sensor generates a reduced amount of the sensor EMF when receiving the magnetic field. An interconnecting circuit generates a parasitic EMF in each of the first operating mode and the second operating mode. The interconnecting circuit connects to a processing device which receives a first measurement for the first operating mode, the first measurement representing the sensor EMF and the parasitic EMF, receives a second measurement for the second operating mode, the second measurement representing the parasitic EMF, compares the first measurement and the second measurement, and determines an approximate value of the sensor EMF.
    Type: Application
    Filed: June 11, 2021
    Publication date: December 16, 2021
    Inventors: Westley S. Ashe, Georg Brunner
  • Patent number: 11187823
    Abstract: A system comprising: a magnetic transmitter configured to generate magnetic fields; a magnetic sensor configured to generate signals based on characteristics of the magnetic fields; and one or more computer systems configured to: cause the magnetic transmitter to generate a first plurality of magnetic fields at a first frequency; receive a first plurality of signals from the magnetic sensor; determine data indicative of a position and orientation of the magnetic sensor at a first position of the magnetic sensor; determine a distortion term that corresponds to a first position of the magnetic sensor; cause the magnetic transmitter to generate a third plurality of magnetic fields at the first frequency; receive a third plurality of signals from the magnetic sensor; and determine a second position and orientation of the magnetic sensor relative to the magnetic transmitter, wherein the first frequency is greater than the second frequency.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: November 30, 2021
    Assignee: Ascension Technology Corporation
    Inventors: Westley S. Ashe, Kenji Fujioka
  • Publication number: 20210337708
    Abstract: An electromagnetic tracking system includes a magnetic transmitter configured to output magnetic fields, a receiver responsive to the magnetic fields, an electronics assembly having conductive elements that cause distortion to the magnetic fields, and an output mechanism configured to output a position of the receiver relative to the magnetic transmitter, wherein the magnetic transmitter has at least one winding disposed around a hollow ferromagnetic core comprised of conductive material through which current is made to flow by the electronics, wherein the electronics assembly is at least partially contained within the hollow portion of the hollow ferromagnetic core. Methods of manufacturing include shaping walls into a hollow shell to surround an electronics assembly, covering the hollow shell with ferromagnetic material, inserting the wrapped hollow shell into a plastic bobbin, and winding the plastic bobbin with coil wire to produce three orthogonal windings.
    Type: Application
    Filed: May 27, 2021
    Publication date: October 28, 2021
    Inventors: Westley S. Ashe, Richard van Wijngaarden, Andrew Wiles
  • Patent number: 11076511
    Abstract: An electromagnetic tracking system includes a magnetic transmitter configured to output magnetic fields, a receiver responsive to the magnetic fields, an electronics assembly having conductive elements that cause distortion to the magnetic fields, and an output mechanism configured to output a position of the receiver relative to the magnetic transmitter, wherein the magnetic transmitter has at least one winding disposed around a hollow ferromagnetic core comprised of conductive material through which current is made to flow by the electronics, wherein the electronics assembly is at least partially contained within the hollow portion of the hollow ferromagnetic core. Methods of manufacturing include shaping walls into a hollow shell to surround an electronics assembly, covering the hollow shell with ferromagnetic material, inserting the wrapped hollow shell into a plastic bobbin, and winding the plastic bobbin with coil wire to produce three orthogonal windings.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: July 27, 2021
    Assignee: Northern Digital Inc.
    Inventors: Westley S. Ashe, Richard van Wijngaarden, Andrew Wiles
  • Publication number: 20200319361
    Abstract: A system comprising: a magnetic transmitter configured to generate magnetic fields; a magnetic sensor configured to generate signals based on characteristics of the magnetic fields; and one or more computer systems configured to: cause the magnetic transmitter to generate a first plurality of magnetic fields at a first frequency; receive a first plurality of signals from the magnetic sensor; determine data indicative of a position and orientation of the magnetic sensor at a first position of the magnetic sensor; determine a distortion term that corresponds to a first position of the magnetic sensor; cause the magnetic transmitter to generate a third plurality of magnetic fields at the first frequency; receive a third plurality of signals from the magnetic sensor; and determine a second position and orientation of the magnetic sensor relative to the magnetic transmitter, wherein the first frequency is greater than the second frequency.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 8, 2020
    Inventors: Westley S. Ashe, Kenji Fujioka
  • Publication number: 20200319267
    Abstract: A system is configured to model a magnetic field by measuring a first value for characteristics of a magnetic field at a first position in the magnetic field. The system measures a second value characteristics of the magnetic field at a second position in the magnetic field. The system determines a distance between the first position and the second position. The system estimates a distortion component of the magnetic field at approximately the second position in the magnetic field based on each of the distance, the first value for each of the one or more characteristics, and the second value for each of the one or more characteristics. The system outputs a model of at least a region of the magnetic field.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 8, 2020
    Inventor: Westley S. Ashe
  • Publication number: 20200221612
    Abstract: An electromagnetic tracking system includes a magnetic transmitter configured to output magnetic fields, a receiver responsive to the magnetic fields, an electronics assembly having conductive elements that cause distortion to the magnetic fields, and an output mechanism configured to output a position of the receiver relative to the magnetic transmitter, wherein the magnetic transmitter has at least one winding disposed around a hollow ferromagnetic core comprised of conductive material through which current is made to flow by the electronics, wherein the electronics assembly is at least partially contained within the hollow portion of the hollow ferromagnetic core.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 9, 2020
    Inventors: Westley S. Ashe, Richard van Wijngaarden, Andrew Wiles
  • Patent number: 10620335
    Abstract: A system comprising: a transmitter that includes at least three coils, the transmitter configured to generate magnetic fields; a sensor that includes at least three coils, the sensor configured to provide sensor signals that correspond to the magnetic fields generated by the transmitter; and a computing device in communication with the transmitter and the sensor, the computing device configured to compare a first sensor signal and a second sensor signal, and based on the comparison, determine whether any of the sensor coils are locked to a corresponding frequency out-of-phase.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: April 14, 2020
    Assignee: Ascension Technology Corporation
    Inventors: Westley S. Ashe, Vladimir F. Kogan
  • Publication number: 20180321417
    Abstract: A system comprising: a transmitter that includes at least three coils, the transmitter configured to generate magnetic fields; a sensor that includes at least three coils, the sensor configured to provide sensor signals that correspond to the magnetic fields generated by the transmitter; and a computing device in communication with the transmitter and the sensor, the computing device configured to compare a first sensor signal and a second sensor signal, and based on the comparison, determine whether any of the sensor coils are locked to a corresponding frequency out-of-phase.
    Type: Application
    Filed: April 19, 2018
    Publication date: November 8, 2018
    Inventors: Westley S. Ashe, Vladimir F. Kogan
  • Patent number: 9603548
    Abstract: An improved system for magnetic position tracking of a device includes a magnetic transmitter, a magnetic sensor, a computing system and a polarity inverter. The magnetic transmitter includes at least one transmitter coil that outputs a transmitted magnetic field having a time derivative component. The magnetic sensor includes at least one sensor coil that has coil terminals having a polarity, and the sensor coil is responsive to the time derivative component of the transmitted magnetic field and outputs a sensor signal. The computing system computes position and angular orientation data of a device based on the sensor signal and the polarity inverter is configured to connect to the coil terminals and to cause the polarity of the coil terminals to be reversed according to a switching signal.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: March 28, 2017
    Assignee: Ascension Technology Corporation
    Inventor: Westley S. Ashe
  • Publication number: 20160302872
    Abstract: An improved system for magnetic position tracking of a device includes a magnetic transmitter, a magnetic sensor, a computing system and a polarity inverter. The magnetic transmitter includes at least one transmitter coil that outputs a transmitted magnetic field having a time derivative component. The magnetic sensor includes at least one sensor coil that has coil terminals having a polarity, and the sensor coil is responsive to the time derivative component of the transmitted magnetic field and outputs a sensor signal. The computing system computes position and angular orientation data of a device based on the sensor signal and the polarity inverter is configured to connect to the coil terminals and to cause the polarity of the coil terminals to be reversed according to a switching signal.
    Type: Application
    Filed: June 27, 2016
    Publication date: October 20, 2016
    Inventor: Westley S. Ashe
  • Patent number: 9360294
    Abstract: Among other things, the disclosure features a system comprising a sensor, a DC magnetic field source, an AC magnetic field source, and a receiver. The sensor has an aspect ratio of 10:1 or higher and comprises a ferromagnetic material. The ferromagnetic material has a non-linear magnetization response, and the response contains a maximum point of non-linearity. The DC magnetic field source is adjustable for providing a magnetic excitation field to excite a magnetic field within the sensor. The provided magnetic excitation field has a range such that the excited magnetic field within the sensor is near the maximum point of non-linearity. The AC magnetic field source is configured to generate an AC magnetic field to cause the sensor to generate even harmonics. The receiver is configured to receive the even harmonics from the sensor for determining a position of the sensor.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: June 7, 2016
    Assignee: Ascension Technology Corporation
    Inventor: Westley S. Ashe
  • Publication number: 20150115944
    Abstract: Among other things, the disclosure features a system comprising a sensor, a DC magnetic field source, an AC magnetic field source, and a receiver. The sensor has an aspect ratio of 10:1 or higher and comprises a ferromagnetic material. The ferromagnetic material has a non-linear magnetization response, and the response contains a maximum point of non-linearity. The DC magnetic field source is adjustable for providing a magnetic excitation field to excite a magnetic field within the sensor. The provided magnetic excitation field has a range such that the excited magnetic field within the sensor is near the maximum point of non-linearity. The AC magnetic field source is configured to generate an AC magnetic field to cause the sensor to generate even harmonics. The receiver is configured to receive the even harmonics from the sensor for determining a position of the sensor.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: Ascension Technology Corporation
    Inventor: Westley S. Ashe
  • Patent number: 8994366
    Abstract: A magnetic field sensor assembly includes a hollow cylindrical core, conductive material and at least first and second lead wires. The hollow cylindrical core is made of ferromagnetic material and has a proximal end and a distal end. The conductive material is disposed around the hollow cylindrical core and forms at least one turn of a coil that has at least one start terminal and at least one finish terminal. The first and second lead wires pass through the center of the hollow cylindrical core and the first lead wire is connected to the start terminal thereby forming a first termination and the second lead wire is connected to the finish terminal thereby forming a second termination. The first and second terminations are positioned within the hollow cylindrical core.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: March 31, 2015
    Assignee: Ascension Technology Corporation
    Inventor: Westley S. Ashe
  • Publication number: 20140159707
    Abstract: A magnetic field sensor assembly includes a hollow cylindrical core, conductive material and at least first and second lead wires. The hollow cylindrical core is made of ferromagnetic material and has a proximal end and a distal end. The conductive material is disposed around the hollow cylindrical core and forms at least one turn of a coil that has at least one start terminal and at least one finish terminal. The first and second lead wires pass through the center of the hollow cylindrical core and the first lead wire is connected to the start terminal thereby forming a first termination and the second lead wire is connected to the finish terminal thereby forming a second termination. The first and second terminations are positioned within the hollow cylindrical core.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: Ascension Technology Corporation
    Inventor: Westley S. Ashe