Patents by Inventor Weyl K. Wang

Weyl K. Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9455778
    Abstract: A method and system for protecting against communication loss or disruption in an optical network system includes a signal state detector, which can measure received optical signals and determine if their strength is sufficient to support reliable communications. If the signal state detector informs the control circuit that the received optical signal is too low to support communications with the data service hub (or if there is no signal at all, such as in a severance of an optical waveguide), then the control circuit can instruct the data switch to re-route communications from the primary communication path to a secondary or back up communication path. This switching or re-routing of communications from a primary communication path which is non-functional or inoperative to an operational and fully functional communication path (a back up or secondary communication path) can be completed in a very short time, such as within fifty milliseconds or less.
    Type: Grant
    Filed: October 6, 2013
    Date of Patent: September 27, 2016
    Assignee: Aurora Networks, Inc.
    Inventors: Weyl K. Wang, James O. Farmer
  • Patent number: 8577220
    Abstract: A method and system for protecting against communication loss or disruption in an optical network system includes a signal state detector, which can measure received optical signals and determine if their strength is sufficient to support reliable communications. If the signal state detector informs the control circuit that the received optical signal is too low to support communications with the data service hub (or if there is no signal at all, such as in a severance of an optical waveguide), then the control circuit can instruct the data switch to re-route communications from the primary communication path to a secondary or back up communication path. This switching or re-routing of communications from a primary communication path which is non-functional or inoperative to an operational and fully functional communication path (a back up or secondary communication path) can be completed in a very short time, such as within fifty milliseconds or less.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: November 5, 2013
    Assignee: Aurora Networks, Inc.
    Inventors: Weyl K. Wang, James O. Farmer
  • Patent number: 7110676
    Abstract: An optical network incorporates one of wavelength based or lightpath link based pre-emphasis to reduce the power fluctuation range at optical receivers in the network. Power output from channel transmitters can be varied on a per channel basis to minimize the effects of non-constant per-channel gain as a function of wavelength. Pre-emphasis circuitry coupled to the transmitters imposes an optical power profile on transmitter output in accordance with an inverse of the gain characteristic of network amplifier elements raised to an exponent which is equal to or less than the number of spans through which an optical signal is transmitted.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: September 19, 2006
    Assignee: Tellabs Operations, Inc.
    Inventors: Weyl K. Wang, Glen P. Koste, Philip J. Lin
  • Publication number: 20030011853
    Abstract: An optical network incorporates one of wavelength based or lightpath link based pre-emphasis to reduce the power fluctuation range at optical receivers in the network. Power output from channel transmitters can be varied on a per channel basis to minimize the effects of non-constant per-channel gain as a function of wavelength. Pre-emphasis circuitry coupled to the transmitters imposes an optical power profile on transmitter output in accordance with an inverse of the gain characteristic of network amplifier elements raised to an exponent which is equal to or less than the number of spans through which an optical signal is transmitted.
    Type: Application
    Filed: February 12, 2002
    Publication date: January 16, 2003
    Inventors: Weyl K. Wang, Glen P. Koste, Philip J. Lin