Patents by Inventor Whitney L. West

Whitney L. West has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10862030
    Abstract: Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the first conductive material. The methods enable formation of silver-containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: December 8, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Scott E. Sills, Whitney L. West, Rob B. Goodwin, Nishant Sinha
  • Publication number: 20190363253
    Abstract: Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the first conductive material. The methods enable formation of silver-containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Inventors: Sanh D. Tang, Scott E. Sills, Whitney L. West, Rob B. Goodwin, Nishant Sinha
  • Patent number: 10411186
    Abstract: Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the first conductive material. The methods enable formation of silver-containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 10, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Scott E. Sills, Whitney L. West, Rob B. Goodwin, Nishant Sinha
  • Publication number: 20180114901
    Abstract: Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the first conductive material. The methods enable formation of silver-containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
    Type: Application
    Filed: December 20, 2017
    Publication date: April 26, 2018
    Inventors: Sanh D. Tang, Scott E. Sills, Whitney L. West, Rob B. Goodwin, Nishant Sinha
  • Patent number: 9865812
    Abstract: Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the first conductive material. The methods enable formation of silver-containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: January 9, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Scott E. Sills, Whitney L. West, Rob B. Goodwin, Nishant Sinha
  • Publication number: 20170092855
    Abstract: Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the first conductive material. The methods enable formation of silver containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
    Type: Application
    Filed: December 12, 2016
    Publication date: March 30, 2017
    Inventors: Sanh D. Tang, Scott E. Sills, Whitney L. West, Rob B. Goodwin, Nishant Sinha
  • Patent number: 9520558
    Abstract: Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the first conductive material. The methods enable formation of silver containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: December 13, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Scott E. Sills, Whitney L. West, Rob B. Goodwin, Nishant Sinha
  • Publication number: 20130320291
    Abstract: Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the first conductive material. The methods enable formation of silver containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Scott E. Sills, Whitney L. West, Rob B. Goodwin, Nishant Sinha
  • Patent number: 8524599
    Abstract: Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the first conductive material. The methods enable formation of silver containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: September 3, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Scott E. Sills, Whitney L. West, Rob B. Goodwin, Nishant Sinha
  • Publication number: 20120235106
    Abstract: Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the material. The methods enable formation of silver containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 20, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Sanh D. Tang, Scott E. Sills, Whitney L. West, Rob B. Goodwin, Nishant Sinha