Patents by Inventor Wie Xu

Wie Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9174947
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate and/or modulate kinase receptor, particularly c-Met, KDR, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: November 3, 2015
    Assignee: Exelixus, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Jeff Chen, Lisa Esther Dalrymple, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrison B. Mac, Grace Mann, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takeuchi, Yong Wang, Wie Xu
  • Patent number: 8476298
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: July 2, 2013
    Assignee: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Jeff Chen, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrisson B. Mac, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takeuchi, Yong Wang, Wie Xu
  • Patent number: 8178532
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: May 15, 2012
    Assignee: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Timothy Patrick Forsyth, Richard George Khoury, James William Leahy, Morrisson B. Mac, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Yong Wang, Wie Xu
  • Patent number: 8067436
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: November 29, 2011
    Assignee: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Jeff Chen, Lisa Esther Dalrymple, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrisson B. Mac, Grace Mann, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takeuchi, Yong Wang, Wie Xu
  • Patent number: 7977345
    Abstract: A compound for modulating kinase activity according to Formula I, or a pharmaceutically acceptable salt thereof, Wherein J1, J2, J3, R2, J4, Z, Ar and R3 are as defined in the specification, compositions thereof, and methods of use thereof.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: July 12, 2011
    Assignee: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Lisa Esther Dalrymple, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrisson B. Mac, Grace Mann, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Yong Wang, Wie Xu
  • Patent number: 7579473
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: August 25, 2009
    Assignee: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Timothy Patrick Forsyth, Richard George Khoury, James William Leahy, Morrisson B. Mac, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Yong Wang, Wie Xu
  • Publication number: 20090170896
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Application
    Filed: February 26, 2009
    Publication date: July 2, 2009
    Applicant: Exelixis, Inc.
    Inventors: Lynn Canne Bannen, Diva Sze-Ming Chan, Jeff Chen, Lisa Esther Dalrymple, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrison B. Mac, Grace Mann, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takeuchi, Yong Wang, Wie Xu
  • Publication number: 20090105299
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Application
    Filed: May 24, 2007
    Publication date: April 23, 2009
    Applicant: EXELIXIS, INC
    Inventors: LYNNE CANNE BANNEN, Diva Sze-Ming Chan, Jeff Chen, Lisa Esther Dalrymple, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrisson B. Mac, Grace Mann, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takeuchi, Yong Wang, Wie Xu
  • Publication number: 20070225307
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Application
    Filed: May 24, 2007
    Publication date: September 27, 2007
    Applicant: EXELIXIS, INC.
    Inventors: Lynne Bannen, Diva Chan, Jeff Chen, Lisa Dalrymple, Timothy Forsyth, Tai Huynh, Vasu Jammalamadaka, Richard Khoury, James Leahy, Morrison Mac, Grace Mann, Larry Mann, John Nuss, Jason Parks, Craig Takeuchi, Yong Wang, Wie Xu