Patents by Inventor Wieslaw J. Roth

Wieslaw J. Roth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10035096
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: July 31, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Harry W. Deckman, Preeti Kamakoti, Peter I. Ravikovitch, Bruce T. Kelley, P. Scott Northrop, Peter C. Rasmussen, Paul L. Tanaka, Martin N. Webster, Wieslaw J. Roth, Edward W. Corcoran, Jr.
  • Publication number: 20160346772
    Abstract: The present invention provides a process for converting a feedstock comprising hydrocarbon compounds using a catalyst made by an improved method for manufacturing high quality porous crystalline MCM-56 material. One such conversion process involves production of monoalkylated aromatic compounds, particularly ethylbenzene and cumene, by the liquid or partial liquid phase alkylation of alkylatable aromatic compound, particularly benzene.
    Type: Application
    Filed: August 10, 2016
    Publication date: December 1, 2016
    Inventors: Ivy D. Johnson, Nadya A. Hrycenko, Wieslaw J. Roth, Terry E. Helton
  • Patent number: 9446961
    Abstract: The present invention provides an improved method for manufacturing high quality porous crystalline MCM-56 material. It also relates to the MCM-56 material manufactured by the improved method, catalyst compositions comprising same and use thereof in a process for catalytic conversion of hydrocarbon compounds. One such conversion process involves production of monoalkylated aromatic compounds, particularly ethylbenzene and cumene, by the liquid or partial liquid phase alkylation of alkylatable aromatic compound, particularly benzene.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: September 20, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ivy D. Johnson, Nadya A. Hrycenko, Wieslaw J. Roth, Terry E. Helton
  • Publication number: 20150328578
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
    Type: Application
    Filed: July 23, 2015
    Publication date: November 19, 2015
    Inventors: Harry W. Deckman, Preeti Kamakoti, Peter I. Ravikovitch, Bruce T. Kelley, P. Scott Northrop, Peter C. Rasmussen, Paul L. Tanaka, Martin N. Webster, Wieslaw J. Roth, Edward W. Corcoran, JR.
  • Patent number: 8852326
    Abstract: This invention relates to aggregates of small particles of synthetic faujasite zeolite. Small primary particles of zeolite are clustered into larger secondary particles. The observable average width of the primary particles may be 0.3 micron or less and the observable average width of the secondary particles may be 0.8 micron or more. The silica to alumina ratio of the zeolite may be less than 4:1.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: October 7, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, Robert C. Lemon, John S. Buchanan, Christine E. Kliewer, Wieslaw J. Roth
  • Publication number: 20140234207
    Abstract: The present invention provides an improved method for manufacturing high quality porous crystalline MCM-56 material. It also relates to the MCM-56 material manufactured by the improved method, catalyst compositions comprising same and use thereof in a process for catalytic conversion of hydrocarbon compounds. One such conversion process involves production of monoalkylated aromatic compounds, particularly ethylbenzene and cumene, by the liquid or partial liquid phase alkylation of alkylatable aromatic compound, particularly benzene.
    Type: Application
    Filed: August 16, 2012
    Publication date: August 21, 2014
    Applicant: EXXONMOBIL CHEMICAL COMPANY-LAW TECHNOLOGY
    Inventors: Ivy D. Johnson, Nadya Ann Hrycenko, Wieslaw J. Roth, Terry E. Helton
  • Patent number: 8704025
    Abstract: This disclosure relates to an EMM-12 molecular sieve having, in its as-synthesized form and in calcined form, an X-ray diffraction pattern including peaks having a d-spacing maximum in the range of 14.17 to 12.57 Angstroms, a d-spacing maximum in the range of 12.1 to 12.56 Angstroms, and non-discrete scattering between about 8.85 to 11.05 Angstroms or exhibit a valley in between the peaks having a d-spacing maximum in the range of 10.14 to 12.0 Angstroms and a d-spacing maximum in the range from 8.66 to 10.13 Angstroms with measured intensity corrected for background at the lowest point being not less than 50% of the point at the same XRD d-spacing on the line connecting maxima in the range of 10.14 to 12.0 Angstroms and in the range from 8.66 to 10.13 Angstroms.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: April 22, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Douglas L. Dorset, Gordon J. Kennedy, Thomas Yorke, Terry Eugene Helton
  • Patent number: 8704023
    Abstract: This disclosure relates to a molecular sieve comprising a framework of tetrahedral atoms bridged by oxygen atoms, the tetrahedral atom framework being defined by a unit cell with atomic coordinates in nanometers shown in Table 3.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: April 22, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Douglas L. Dorset, Gordon J. Kennedy, Thomas Yorke, Terry Eugene Helton, Prasenjeet Ghosh, Joshi V. Yogesh
  • Patent number: 8636976
    Abstract: This invention relates to a crystalline molecular sieve having, in its as-synthesized form, an X-ray diffraction pattern including d-spacing maxima at 13.18±0.25 and 12.33±0.23 Angstroms, wherein the peak intensity of the d-spacing maximum at 13.18±0.25 Angstroms is at least as great as 90% of the peak intensity of the d-spacing maximum at 12.33±0.23 Angstroms. This invention also relates to a method of making thereof.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: January 28, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Thomas Yorke, Michael C. Kerby, Simon C. Weston
  • Patent number: 8529870
    Abstract: The crystalline molecular sieve material EMM-7 has, in its as-synthesized form, an X-ray diffraction pattern including d-spacing maxima substantially as set forth in Table 1: TABLE 1 Interplanar d-Spacing (?) Relative Intensity, I/Io × 100 8.40 ± 0.2 w-m 6.80 ± 0.2 w-s 4.46 ± 0.1 m-s 3.73 ± 0.1 m-s 3.68 ± 0.1 m-s 3.40 ± 0.1 s-vs wherein “vs” means very strong (greater than 60 to 100), “s” means strong (greater than 40 to 60), “m” means medium (greater than 20 to 40) and “w” means weak (0 to 20).
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: September 10, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Wieslaw J. Roth, Thomas Yorke
  • Patent number: 8529752
    Abstract: This invention relates to a process for hydrocarbon conversion comprising contacting a hydrocarbon feedstock with a crystalline molecular sieve, in its ammonium exchanged form or in its calcined form, under conversion conditions to form a conversion product, said crystalline molecular sieve comprising unit cells with MWW topology and is characterized by diffraction streaking from the unit cell arrangement in the c direction as evidenced by the arced hk0 patterns of electron diffraction pattern.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: September 10, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Thomas Yorke, Douglas Lewis Dorset, Mohan Kalyanaraman, Michael Charles Kerby, Simon Christopher Weston
  • Patent number: 8524964
    Abstract: This disclosure relates to a process for hydrocarbon conversion comprising contacting, under conversion conditions, a feedstock suitable for hydrocarbon conversion with a catalyst comprising an EMM-10 family molecular sieve.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Jane C. Cheng, Mohan Kalyanaraman, Michael C. Kerby, Terry E. Helton
  • Publication number: 20120269718
    Abstract: This invention relates to a crystalline molecular sieve having, in its as-synthesized form, an X-ray diffraction pattern including d-spacing maxima at 13.18±0.25 and 12.33±0.23 Angstroms, wherein the peak intensity of the d-spacing maximum at 13.18±0.25 Angstroms is at least as great as 90% of the peak intensity of the d-spacing maximum at 12.33±0.23 Angstroms. This invention also relates to a method of making thereof.
    Type: Application
    Filed: June 28, 2012
    Publication date: October 25, 2012
    Inventors: Wieslaw J Roth, Thomas Yorke, Michael Charles Kerby, Simon C. Weston
  • Publication number: 20120227584
    Abstract: This invention relates to aggregates of small particles of synthetic faujasite zeolite. Small primary particles of zeolite are clustered into larger secondary particles. The observable average width of the primary particles may be 0.3 micron or less and the observable average width of the secondary particles may be 0.8 micron or more. The silica to alumina ratio of the zeolite may be less than 4:1.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 13, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kun Wang, Robert C. Lemon, John S. Buchanan, Christine E. Kliewer, Wieslaw J. Roth
  • Patent number: 8262904
    Abstract: This invention relates to a crystalline molecular sieve having, in its as-synthesized form, an X-ray diffraction pattern including d-spacing maxima at 13.18±0.25 and 12.33±0.23 Angstroms, wherein the peak intensity of the d-spacing maximum at 13.18±0.25 Angstroms is at least as great as 90% of the peak intensity of the d-spacing maximum at 12.33±0.23 Angstroms. This invention also relates to a method of making thereof.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: September 11, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Thomas Yorke, Michael C. Kerby, Simon C. Weston
  • Publication number: 20120226084
    Abstract: This invention relates to a process for hydrocarbon conversion comprising contacting a hydrocarbon feedstock with a crystalline molecular sieve, in its ammonium exchanged form or in its calcined form, under conversion conditions to form a conversion product, said crystalline molecular sieve comprising unit cells with MWW topology and is characterized by diffraction streaking from the unit cell arrangement in the c direction as evidenced by the arced hk0 patterns of electron diffraction pattern.
    Type: Application
    Filed: December 15, 2011
    Publication date: September 6, 2012
    Inventors: Wieslaw J. Roth, Thomas Yorke, Douglas Lewis Dorset, Mohan Kalyanaraman, Michael Charles Kerby, Simon Christopher Weston
  • Patent number: 8217213
    Abstract: This disclosure relates to a process for manufacturing a mono-cycloalkyl-substituted aromatic compound, said process comprising contacting a feedstock comprising an aromatic compound and hydrogen under hydroalkylation reaction conditions with a catalyst system comprising a molecular sieve and at least one metal with hydrogenation activity, wherein said molecular sieve has, in its as-synthesized form and in calcined form, an X-ray diffraction pattern including peaks having a d-spacing maximum in the range of 14.17 to 12.57 Angstroms, a d-spacing maximum in the range of 12.1 to 12.56 Angstroms.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: July 10, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Terry E. Helton, Jane C. Cheng, Michael J. Brennan
  • Patent number: 8212096
    Abstract: This disclosure relates to a process for manufacturing a mono-cycloalkyl-substituted aromatic compound, said process comprising contacting a feedstock comprising an aromatic compound and hydrogen under hydroalkylation reaction conditions with a catalyst system comprising a molecular sieve, wherein said molecular sieve comprises a framework of tetrahedral atoms bridged by oxygen atoms, the tetrahedral atom framework being defined by a unit cell with atomic coordinates in nanometers shown in Table 2.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: July 3, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Terry E. Helton, Jane C. Cheng, Michael J. Brennan
  • Patent number: 8110176
    Abstract: This invention relates to a crystalline molecular sieve, in its ammonium exchanged form or in its calcined form, comprising unit cells with MWW topology, said crystalline molecular sieve is characterized by diffraction streaking from the unit cell arrangement in the c direction. The crystalline molecular sieve is further characterized by the arced hk0 patterns of electron diffraction pattern. The crystalline molecular sieve is further characterized by the unit cells streaking along c direction. This invention also relates to a method of making thereof.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: February 7, 2012
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Thomas Yorke, Douglas Lewis Dorset, Mohan Kalyanaraman, Michael Charles Kerby, Simon Christopher Weston
  • Publication number: 20110237826
    Abstract: This invention relates to a crystalline molecular sieve having, in its as-synthesized form, an X-ray diffraction pattern including d-spacing maxima at 13.18±0.25 and 12.33±0.23 Angstroms, wherein the peak intensity of the d-spacing maximum at 13.18±0.25 Angstroms is at least as great as 90% of the peak intensity of the d-spacing maximum at 12.33±0.23 Angstroms. This invention also relates to a method of making thereof.
    Type: Application
    Filed: April 28, 2011
    Publication date: September 29, 2011
    Inventors: Wieslaw J. Roth, Thomas Yorke, Michael C. Kerby, Simon C. Weston