Patents by Inventor Wil McCarthy

Wil McCarthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090059406
    Abstract: A wavelength-specific optical switch combines one or more tunable filters and bandblock reflectors such that the absorption or reflection of selected wavelength bands in the optical spectrum (visible, near infrared, or near ultraviolet) can be switched on and off. The wavelength switch is programmable, multifunctional, general-purpose, solid-state optical filter. The wavelength switch may serve as a tunable notch or bandblock filter, a tunable bandpass filter, a tunable highpass or lowpass filter, or a tunable band reflector. The wavelength switch has particular, but not exclusive, application in optics as a filter, band reflector, and as a means of isolating particular wavelengths or wavelength bands from a collimated light stream for transmission to, or rejection from, a sensor.
    Type: Application
    Filed: February 29, 2008
    Publication date: March 5, 2009
    Applicant: RAVENBRICK, LLC
    Inventors: Richard M. Powers, Wil McCarthy
  • Publication number: 20090015902
    Abstract: The thermally switched reflective optical shutter is a self-regulating “switchable mirror” device that reflects up to 100% of incident radiant energy above a threshold temperature, and reflects up to 50% of incident radiant energy below a threshold temperature. Control over the flow of radiant energy occurs independently of the thermal conductivity or insulating value of the device, and may or may not preserve the image and color properties of incoming visible light. The device can be used as a construction material to efficiently regulate the internal temperature and illumination of buildings, vehicles, and other structures without the need for an external power supply or operator signals. The device has unique aesthetic optical properties that are not found in traditional windows, skylights, stained glass, light fixtures, glass blocks, bricks, or walls.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 15, 2009
    Inventors: Richard M. Powers, Wil McCarthy
  • Publication number: 20080210893
    Abstract: A thermally switched optical downconverting (TSOD) filter is a self-regulating device including a downconverter that converts incoming light at a variety of wavelengths into longer-wavelength radiation and then directs it using one or more bandblock filters in either the inward or outward direction, depending on the temperature of the device. This control over the flow of radiant energy occurs independently of the thermal conductivity or insulating properties of the device and may or may not preserve the image and color properties of incoming visible light. The TSOD filter has energy-efficiency implications, as it can be used to regulate the internal temperature and illumination of buildings, vehicles, and other structures without the need for an external power supply or operator signals. The TSOD filter also has aesthetic implications, since the device has unique optical properties that are not found in traditional windows, skylights, stained glass, light fixtures, glass blocks, bricks, or walls.
    Type: Application
    Filed: January 24, 2008
    Publication date: September 4, 2008
    Applicant: RAVENBRICK, LLC
    Inventors: Wil McCarthy, Richard M. Powers
  • Publication number: 20080204383
    Abstract: A multicolor light emitting optical device is a programmable, multifunctional, general-purpose, solid-state light source. The device can use any of several light sources, including LEDs. The device couples a light source and a tunable optical converter composed of a quantum confinement device to produce a tunable, monochromatic light emission. The output wavelength of the optical device can be selected from within a tunable range of the optical (visible, near infrared, or near ultraviolet) spectrum on demand, in real time. The optical device is capable of serving as a tunable light source, a “true color” pixel, and a replacement for bi-color, tri-color, and multi-color light-emitting diodes. The optical device has particular, but not exclusive, application as an indicator light, in room lighting, and as a picture element in video displays.
    Type: Application
    Filed: February 27, 2008
    Publication date: August 28, 2008
    Applicant: RavenBrick, LLC
    Inventors: Wil McCarthy, Richard M. Powers
  • Publication number: 20080061222
    Abstract: A multispectral optical sensor incorporating quantum confinement devices is composed of a solid-state tunable filter, an optional lens, and a photodetector or plurality of photodetectors. The tunable filter is multilayered composite film of semiconducting materials, which includes a quantum well or other quantum confinement structure and barrier materials to ensure the proper confinement of charge carriers within the quantum well. The tunable filter is capable of acting as a long-pass filter. The approximate cut-on wavelength is established through selection of a well material with a bandgap near the desired energy, and barrier materials with a higher bandgap. For a given reference temperature the exact cut-on wavelength may be fixed through careful selection of the dimensions of the quantum confinement structures, whose quantum confinement energy is added to the bandgap energy to yield the cut-on energy.
    Type: Application
    Filed: September 12, 2007
    Publication date: March 13, 2008
    Applicant: THE PROGRAMMABLE MATTER CORPORATION
    Inventors: Richard M. Powers, Wil McCarthy, Paul Ciszek
  • Patent number: 7276432
    Abstract: A programmable dopant fiber includes a plurality of quantum structures formed on a fiber-shaped substrate, wherein the substrate includes one or more energy-carrying control paths, which pass energy to quantum structures. Quantum structures may include quantum dot particles on the surface of the fiber or electrodes on top of barrier layers and a transport layer, which form quantum dot devices. The energy passing through the control paths drives charge carriers into the quantum dots, leading to the formation of “artificial atoms” with real-time, tunable properties. These artificial atoms then serve as programmable dopants, which alter the behavior of surrounding materials. The fiber can be used as a programmable dopant inside bulk materials, as a building block for new materials with unique properties, or as a substitute for quantum dots or quantum wires in certain applications.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: October 2, 2007
    Assignee: The Programmable Matter Corporation
    Inventors: Wil McCarthy, Gary E Snyder
  • Publication number: 20070194297
    Abstract: A multifunctional, programmable quantum confinement switching device uses the quantum confinement of charge carriers to operate on an input signal or energy and to release an output signal or energy. Energy enters the device through an input path and leaves through an output path, after being selectively blocked or modified by the switching action of the device under the influence of a control path. The quantum confinement of charge carriers as an artificial atom within a layer of the device in a quantum well or a quantum dot operates as the switch. The artificial atoms serve as dopants within a material supporting the device and are directly related to the voltage between the control path and a ground plane. The electrical, optical, thermal, or other energy passing through the device is selectively blocked, regulated, filtered, or modified by the doping properties of the artificial atoms. The remaining, unblocked energy is then free to exit the device through the output path.
    Type: Application
    Filed: February 20, 2007
    Publication date: August 23, 2007
    Applicant: THE PROGRAMMABLE MATTER CORPORATION
    Inventors: Wil McCarthy, Richard M. Powers, Gary E. Snyder
  • Publication number: 20060049394
    Abstract: Quantum dots are positioned within a layered composite film to produce one-dimensional and multi-dimensional shift registers within the film. Charge carriers are driven into the quantum dots by energy in connected control paths. The charge carriers are trapped in the quantum dots through quantum confinement, such that the charge carriers form artificial atoms, which serve as dopants for the surrounding materials. The atomic number of each artificial atom is adjusted through precise variations in the voltage across the quantum dot that confines it. The position of the artificial atom in the film is moved by varying the location of confinement and thus operates as a shift register.
    Type: Application
    Filed: June 3, 2005
    Publication date: March 9, 2006
    Inventors: Gary Snyder, Wil McCarthy
  • Publication number: 20060011904
    Abstract: Quantum dots are positioned within a layered composite film to produce a plurality of real-time programmable dopants within the film. Charge carriers are driven into the quantum dots by energy in connected control paths. The charge carriers are trapped in the quantum dots through quantum confinement, such that the charge carriers form artificial atoms, which serve as dopants for the surrounding materials. The atomic number of each artificial atom is adjusted through precise variations in the voltage across the quantum dot that confines it. The change in atomic number alters the doping characteristics of the artificial atoms. The layered composite film is also configured as a shift register.
    Type: Application
    Filed: June 3, 2005
    Publication date: January 19, 2006
    Inventors: Gary Snyder, Wil McCarthy
  • Patent number: 6978070
    Abstract: A programmable dopant fiber includes a plurality of quantum structures formed on a fiber-shaped substrate, wherein the substrate includes one or more energy-carrying control paths (34), possibly surrounded by an insulator (35), which pass energy to quantum structures. Quantum structures may include quantum dot particles (37) on the surface of the fiber or electrodes (30) on top of barrier layers (31) and transport layer (32) which form quantum dot devices (QD). The energy passing through the control paths (34) drives charge carriers into the quantum dots (QD), leading to the formation of “artificial atoms” with real-time tunable properties. These artificial atoms then serve as programmable dopants, which alter the behavior of surrounding materials. The fiber can be used as a programmable dopant inside bulk materials, as a building block for new materials with unique properties, or as a substitute for quantum dots or quantum wires in certain applications.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: December 20, 2005
    Assignee: The Programmable Matter Corporation
    Inventors: Wil McCarthy, Gary E. Snyder
  • Publication number: 20050157996
    Abstract: A programmable dopant fiber includes a plurality of quantum structures formed on a fiber-shaped substrate, wherein the substrate includes one or more energy-carrying control paths, which pass energy to quantum structures. Quantum structures may include quantum dot particles on the surface of the fiber or electrodes on top of barrier layers and a transport layer, which form quantum dot devices. The energy passing through the control paths drives charge carriers into the quantum dots, leading to the formation of “artificial atoms” with real-time, tunable properties. These artificial atoms then serve as programmable dopants, which alter the behavior of surrounding materials. The fiber can be used as a programmable dopant inside bulk materials, as a building block for new materials with unique properties, or as a substitute for quantum dots or quantum wires in certain applications.
    Type: Application
    Filed: March 16, 2005
    Publication date: July 21, 2005
    Inventors: Wil McCarthy, Gary Snyder
  • Publication number: 20050157997
    Abstract: A programmable dopant fiber includes a plurality of quantum structures formed on a fiber-shaped substrate, wherein the substrate includes one or more energy-carrying control paths, which pass energy to quantum structures. Quantum structures may include quantum dot particles on the surface of the fiber or electrodes on top of barrier layers and a transport layer, which form quantum dot devices. The energy passing through the control paths drives charge carriers into the quantum dots, leading to the formation of “artificial atoms” with real-time, tunable properties. These artificial atoms then serve as programmable dopants, which alter the behavior of surrounding materials. The fiber can be used as a programmable dopant inside bulk materials, as a building block for new materials with unique properties, or as a substitute for quantum dots or quantum wires in certain applications.
    Type: Application
    Filed: March 16, 2005
    Publication date: July 21, 2005
    Inventors: Wil McCarthy, Gary Snyder