Patents by Inventor Wilbur Lam

Wilbur Lam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230330031
    Abstract: This disclosure relates to microcapsule particles for targeted delivery of drugs. In certain embodiments, the particles comprise polyelectrolyte polymers, e.g., layers of anionic polymers and cationic polymers. In certain embodiments, the particles have a fibrinogen coating. In certain embodiments, the particles contain a polysaccharide core and/or a polysaccharide coating, encapsulating drugs, proteins, clotting agents, coagulation factors, or anticoagulants. In certain embodiments, this disclosure contemplates methods of using particles disclosed herein to prevent or reduce onset of or duration of bleeding. In certain embodiments, this disclosure contemplates methods of using particles disclosed herein to prevent or reduce onset of blood clotting.
    Type: Application
    Filed: June 29, 2023
    Publication date: October 19, 2023
    Inventors: Wilbur A. Lam, Caroline Hansen, Yumiko Sakurai, Andrew Lyon
  • Patent number: 11730701
    Abstract: This disclosure relates to microcapsule particles for targeted delivery of drugs. In certain embodiments, the particles comprise polyelectrolyte polymers, e.g., layers of anionic polymers and cationic polymers. In certain embodiments, the particles have a fibrinogen coating. In certain embodiments, the particles contain a polysaccharide core and/or a polysaccharide coating encapsulating drugs, proteins, clotting agents, coagulation factors, or anticoagulants. In certain embodiments, this disclosure contemplates methods of using particles disclosed herein to prevent or reduce onset of or duration of bleeding. In certain embodiments, this disclosure contemplates methods of using particles disclosed herein to prevent or reduce onset of blood clotting.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: August 22, 2023
    Assignees: Emory University, Georgia Tech Research Corporation, Chapman University, Children's Healthcare of Atlanta, Inc.
    Inventors: Wilbur A. Lam, Caroline Hansen, Yumiko Sakurai, Andrew Lyon
  • Publication number: 20230175951
    Abstract: An exemplary embodiment of the present disclosure provides a live cell imaging system, comprising a substrate, a UV light source, and a UV camera. The substrate can have a cavity configured to hold a sample. The sample can comprise one or more live cells. The substrate can be made, at least in part, out of polydimethylsiloxane (PDMS). The UV light source can be configured to direct UV light to the sample. The UV camera can be configured to take a UV image of the sample.
    Type: Application
    Filed: December 8, 2022
    Publication date: June 8, 2023
    Inventors: Francisco E. Robles, Wilbur Lam, Ashkan Ojaghi, Evelyn Williams
  • Publication number: 20230047070
    Abstract: This disclosure relates to microcapsule particles for targeted delivery of drugs. In certain embodiments, the particles comprise polyelectrolyte polymers, e.g., layers of anionic polymers and cationic polymers. In certain embodiments, the particles have a fibrinogen coating. In certain embodiments, the particles contain a polysaccharide core and/or a polysaccharide coating encapsulating drugs, proteins, clotting agents, coagulation factors, or anticoagulants. In certain embodiments, this disclosure contemplates methods of using particles disclosed herein to prevent or reduce onset of or duration of bleeding. In certain embodiments, this disclosure contemplates methods of using particles disclosed herein to prevent or reduce onset of blood clotting.
    Type: Application
    Filed: September 23, 2022
    Publication date: February 16, 2023
    Inventors: Wilbur A. Lam, Caroline Hansen, Yumiko Sakurai, Andrew Lyon
  • Patent number: 11464748
    Abstract: This disclosure relates to microcapsule particles for targeted delivery of drugs. In certain embodiments, the particles comprise polyelectrolyte polymers, e.g., layers of anionic polymers and cationic polymers. In certain embodiments, the particles have a fibrinogen coating. In certain embodiments, the particles contain a polysaccharide core and/or a polysaccharide coating encapsulating drugs, proteins, clotting agents, coagulation factors, or anticoagulants. In certain embodiments, this disclosure contemplates methods of using particles disclosed herein to prevent or reduce onset of or duration of bleeding. In certain embodiments, this disclosure contemplates methods of using particles disclosed herein to prevent or reduce onset of blood clotting.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: October 11, 2022
    Assignees: Emory University, Children's Healthcare of Atlanta, Inc., Georgia Tech Research Corporation, Chapman University
    Inventors: Wilbur A. Lam, Caroline Hansen, Yumiko Sakurai, Andrew Lyon
  • Publication number: 20220184604
    Abstract: The systems, devices, and methods utilize devices configured to (i) control the loading of each channel layer and/or (ii) prevent formation of bubbles within the channels. A device may include two or more stacked layers. The two or more stacked layers may include a first layer and a second layer. The first entry region diameter of the first layer and the second entry region diameter of the second layer may be different; and/or the first exit region diameter of the first layer and the second exit region diameter of the second layer may be different; and/or one or more of the first channel dimensions (e.g., length and/or width) of the first layer and the one or more of the second channel dimensions (e.g., length and/or width) of the second layer may be different.
    Type: Application
    Filed: April 13, 2020
    Publication date: June 16, 2022
    Inventors: Wilbur A. Lam, Reginald Tran, Christopher B. Doering, Harold Trent Spencer
  • Publication number: 20210361195
    Abstract: A smartphone-based hemoglobin (Hgb) assessment application quantitatively analyzes pallor in patient-sourced photos using image analysis algorithms to enable a noninvasive, accurate quantitative smartphone app for detecting anemia. A user takes a photo of his/her fingernail beds using the app and receives an accurate displayed Hgb level. Since fingernails do not contain melanocytes, the primary source of color of these anatomical features is blood Hgb. At the same time, quality control software minimizes the impact of common fingernail irregularities (e.g. leukonychia and camera flash reflection) on Hgb level measurement. Metadata recorded upon capturing the image is leveraged for determining a users' Hgb level thereby eliminating the need for external equipment. A personalized calibration of image data with measured Hgb levels improves the accuracy of the application.
    Type: Application
    Filed: November 5, 2019
    Publication date: November 25, 2021
    Inventors: Robert MANNINO, Wilbur LAM, Gari CLIFFORD, Erika TYBURSKI
  • Patent number: 10989907
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: April 27, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill
  • Publication number: 20200336630
    Abstract: An improved system and methods for enhancing the imaging of cameras included with wireless mobile devices, such as cellular phone or tablets. The imaging system includes a releasable optical attachment for imaging skin surfaces and cavities of the body. The releasable optical attachment comprises optical enhancement elements such as magnifying lenses, illumination diverting elements, and filters. Images can be viewed and analyzed on the mobile device, or transmitted to another location/device for analysis by a person or software. The results can be used to provide diagnosis, or for a variety of other applications including image comparison over time and product recommendations.
    Type: Application
    Filed: March 5, 2020
    Publication date: October 22, 2020
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Erik Douglas, Amy Sheng, Wilbur Lam, Robi Maamari
  • Publication number: 20200306199
    Abstract: This disclosure relates to microcapsule particles for targeted delivery of drugs. In certain embodiments, the particles comprise polyelectrolyte polymers, e.g., layers of anionic polymers and cationic polymers. In certain embodiments, the particles have a fibrinogen coating. In certain embodiments, the particles contain a polysaccharide core and/or a polysaccharide coating encapsulating drugs, proteins, clotting agents, coagulation factors, or anticoagulants. In certain embodiments, this disclosure contemplates methods of using particles disclosed herein to prevent or reduce onset of or duration of bleeding. In certain embodiments, this disclosure contemplates methods of using particles disclosed herein to prevent or reduce onset of blood clotting.
    Type: Application
    Filed: January 31, 2017
    Publication date: October 1, 2020
    Inventors: Wilbur A. Lam, Caroline Hansen, Yumiko Sakurai, Andrew Lyon
  • Publication number: 20200257103
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Application
    Filed: February 10, 2020
    Publication date: August 13, 2020
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill
  • Publication number: 20200159001
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Application
    Filed: September 23, 2019
    Publication date: May 21, 2020
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill
  • Patent number: 10616457
    Abstract: An improved system and methods for enhancing the imaging of cameras included with wireless mobile devices, such as cellular phone or tablets. The imaging system includes a releasable optical attachment for imaging skin surfaces and cavities of the body. The releasable optical attachment comprises optical enhancement elements such as magnifying lenses, illumination diverting elements, and filters. Images can be viewed and analyzed on the mobile device, or transmitted to another location/device for analysis by a person or software. The results can be used to provide diagnosis, or for a variety of other applications including image comparison over time and product recommendations.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: April 7, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Erik Douglas, Amy Sheng, Wilbur Lam, Robi Maamari
  • Publication number: 20200095608
    Abstract: The systems and methods are directed to leveraging the channel geometry and configuration to overcome diffusion limitations of current transduction systems. The methods may include a method of transducing target cells using a device. The device may include at least one continuous channel. The method may include delivering target cells and viral vectors into a transduction region of the channel. After transducing for some incubation time, a flushing solution may be delivered. The method may include collecting transduced cells after the transducing incubation time and the delivering of the flushing solution.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Reginald Tran, Wilbur Lam, David Myers, Christopher Doering, Harold Spencer
  • Publication number: 20190243117
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Application
    Filed: October 3, 2018
    Publication date: August 8, 2019
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill
  • Publication number: 20190212345
    Abstract: Diagnostic kits and methods configured to rapidly and non-invasively determine physiologic levels of hemoglobin. A diagnostic kit may include a chamber pre-filled with an indicator, the indicator solution including a tetramethylbenzidine (TMB) solution, the indicator being configured to change color; a collection device configured to collect a test sample from a subject. The kit may also include a hemoglobin physiologic level identifier legend, the legend indicating 1) at least one color of the indicator and 2) a physiologic level and/or range of the hemoglobin and/or disease state associated with the color.
    Type: Application
    Filed: March 14, 2019
    Publication date: July 11, 2019
    Inventors: Wilbur A. LAM, Morgan Byrd, Erika Tyburski, Michael L. Mckinnon, Siobhan O'Connor, Nathan A. Hotaling
  • Patent number: 10234466
    Abstract: Diagnostic kits and methods configured to rapidly and non-invasively determine physiologic levels of hemoglobin. A diagnostic kit may include a chamber pre-filled with an indicator, the indicator solution including a tetramethylbenzidine (TMB) solution, the indicator being configured to change color; a collection device configured to collect a test sample from a subject. The kit may also include a hemoglobin physiologic level identifier legend, the legend indicating 1) at least one color of the indicator and 2) a physiologic level and/or range of the hemoglobin and/or disease state associated with the color.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 19, 2019
    Inventors: Wilbur A. Lam, Morgan Byrd, Erika Tyburski, Michael L. McKinnon, Siobhan O'Connor, Nathan A. Hotaling
  • Patent number: 10168341
    Abstract: A device may be configured to allow individual measuring of at least one property of at least one cell, such as measuring a contraction force of a platelet. The device may include a plurality of wells. Each well may include a hydrogel layer, the hydrogel layer including a hydrogel having a top surface that includes a pattern of cell interaction regions. The wells may differ in stiffness properties of the hydrogel and/or biochemical conditions. Each cell interaction region may include a group of at least two cell interaction sites. The spacing between each cell interaction region may be greater than a spacing between the at least two cell interaction sites of each cell interaction region. In this way, cell-cell interactions may be reduced and thereby increasing number of individual cells capable of being measured.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: January 1, 2019
    Assignees: Emory University, Children's Healthcare of Atlanta, Inc.
    Inventors: Wilbur A. Lam, David Myers, Yongzhi Qiu
  • Patent number: 10126539
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: November 13, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill
  • Patent number: 9993575
    Abstract: Devices and methods relate to inducing or promoting hemostasis. The hemostasis device may include a support layer having a first surface and an opposing second surface. The device may include a layer, the layer disposed on the first surface. The layer may include a target surface configured to contact a target site. The layer may include a monolayer of about 100% graphene or may include laser-reduced graphene oxide. The device may include a sensor configured to measure a level of hemostasis of the target site. The methods relate to a method of manufacturing a hemostatic device including a monolayer of graphene or a layer of laser-reduced graphene oxide.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: June 12, 2018
    Assignees: Emory University, Children's Healthcare of Atlanta, Inc.
    Inventors: Wilbur A. Lam, Anton Sidorov, Zhigang Jlang