Patents by Inventor Wilfried Mueller

Wilfried Mueller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9920677
    Abstract: A method for producing a delivery module having an electric PTC heater, for installation into a tank for storing a liquid additive, includes: a) fixing a maximum electrical power that is made available to the delivery module; b) determining a thermal conductivity of the delivery module from a location of the electric PTC heater into the tank; c) calculating a switching temperature of the PTC heater based on the maximum electrical power and the thermal conductivity; and d) mounting a PTC material with a corresponding switching temperature for the PTC heater at the location.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: March 20, 2018
    Assignee: Continental Automotive GmbH
    Inventors: Wilfried Müller, Egbert Zienicke
  • Patent number: 9484518
    Abstract: A method for producing a thermoelectric module and a tubular thermoelectric module include at least an inner tube, an outer tube and an interspace therebetween. At least a plurality of rings each formed by a plurality of n-doped and p-doped semiconductor elements disposed alternately in a circumferential direction are disposed in succession in an axial direction of the thermoelectric module in the interspace. On an inner side or an outer side of the semiconductor elements of one ring, electrically conductive first connections run only in the circumferential direction and, on an opposite outer side or inner side, at least one electrically conductive second connection electrically conductively connects an n-doped to a p-doped semiconductor element of an adjacent ring and runs at least in the axial direction of the thermoelectric module.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: November 1, 2016
    Assignee: EMITEC Gesellschaft fuer Emissionstechnologie mbH
    Inventor: Wilfried Mueller
  • Publication number: 20160186633
    Abstract: A method for producing a delivery module having an electric PTC heater, for installation into a tank for storing a liquid additive, includes: a) fixing a maximum electrical power that is made available to the delivery module; b) determining a thermal conductivity of the delivery module from a location of the electric PTC heater into the tank; c) calculating a switching temperature of the PTC heater based on the maximum electrical power and the thermal conductivity; and d) mounting a PTC material with a corresponding switching temperature for the PTC heater at the location.
    Type: Application
    Filed: July 14, 2014
    Publication date: June 30, 2016
    Inventors: Wilfried MÜLLER, Egbert ZIENICKE
  • Publication number: 20150107639
    Abstract: A thread has an extent and at least partly includes a thermoelectric material. A method for producing a component for a thermoelectric module includes at least providing at least one thread having an extent, providing a tubular receptacle having an outer circumferential surface and winding the at least one thread around the tubular receptacle in such a way that at least one annular component for a thermoelectric module is formed on the outer circumferential surface. A tubular thermoelectric module is also provided.
    Type: Application
    Filed: December 24, 2014
    Publication date: April 23, 2015
    Inventors: ROLF BRUECK, WILFRIED MUELLER
  • Patent number: 8991161
    Abstract: A process which solves the problem of supplying NO2 in accordance with requirements by means of temperature control of the precatalyst which is decoupled from the operating state of the engine. In an associated apparatus, a precatalyst which contains at least one oxidation component and whose temperature can be controlled independently of the operating state of the engine and an active SCR stage comprising an SCR catalyst with upstream metering facility for a reducing agent from an external source are arranged in series. A particle filter can be arranged between precatalyst and metering facility. The precatalyst preferably additionally contains a nitrogen oxide storage material.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: March 31, 2015
    Assignee: Umicore AG & Co. KG
    Inventors: Lothar Mussmann, Ingo Lappas, Andreas Geisselmann, Wilfried Mueller
  • Patent number: 8969704
    Abstract: An annular semiconductor element for producing a thermoelectric module includes at least one groove extending in a radial direction from an internal circumferential face to an external circumferential face. An annular insulation material insulates n-doped and p-doped semiconductor elements and is accordingly disposed on a lateral face of the semiconductor elements. The insulation material has a slit which extends in the radial direction and divides the insulation material. A thermoelectric module and a method for manufacturing the thermoelectric module are also provided.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: March 3, 2015
    Assignee: EMITEC Gesellschaft fuer Emissionstechnologie mbH
    Inventors: Rolf Brueck, Wilfried Mueller, Sigrid Limbeck
  • Patent number: 8695329
    Abstract: The adherence to future legally obligatory exhaust gas limit values for diesel vehicles in Europe, North America and Japan requires not only the removal of particles but also effective removal of nitrogen oxides from the exhaust gas (‘deNOx’). The ‘active SCR process’ is the preferred method for this. The nitrogen oxide conversions achieved by means of this process are particularly high when an optimal NO2/NOx ratio, preferably 0.5, is set upstream of the SCR catalyst. The invention proposes a process which solves the problem of supplying NO2 in accordance with requirements by means of temperature control of the precatalyst which is decoupled from the operating state of the engine.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: April 15, 2014
    Assignee: UMICORE AG & Co. KG
    Inventors: Lothar Mussmann, Ingo Lappas, Andreas Geisselmann, Wilfried Mueller
  • Publication number: 20140056789
    Abstract: A process which solves the problem of supplying NO2 in accordance with requirements by means of temperature control of the precatalyst which is decoupled from the operating state of the engine. In an associated apparatus, a precatalyst which contains at least one oxidation component and whose temperature can be controlled independently of the operating state of the engine and an active SCR stage comprising an SCR catalyst with upstream metering facility for a reducing agent from an external source are arranged in series. A particle filter can be arranged between precatalyst and metering facility. The precatalyst preferably additionally contains a nitrogen oxide storage material.
    Type: Application
    Filed: September 6, 2013
    Publication date: February 27, 2014
    Applicant: UMICORE AG & CO. KG
    Inventors: Lothar MUSSMANN, Ingo Lappas, Andreas Geisselmann, Wilfried Mueller
  • Publication number: 20130202507
    Abstract: The present invention relates to a method for the treatment of an exhaust gas comprising NOx, wherein the method comprises the step of subjecting the exhaust gas to an exhaust gas treatment system comprising, in order of the exhaust stream: (a) a first NOx storage catalytic converter (2, 2?); (b) a catalytic converter (3) for selective catalytic reduction (SCR) downstream of the first NOx storage catalytic converter; and (C) a catalytic converter (4) having oxygen storage capacity downstream of the SCR catalytic converter; wherein the exhaust gas treatment system is operated in alternating rich and lean phases, wherein the rich phase is terminated when the amount of reducing components leaving the first NOx storage catalytic converter is at least 0.
    Type: Application
    Filed: November 10, 2008
    Publication date: August 8, 2013
    Inventors: Stephan Echoff, Ruediger Hoyer, Susanne Philipp, Ina Grisstede, Wilfried Mueller, Friedemann Rohr
  • Patent number: 8475753
    Abstract: The present invention relates to an exhaust-gas aftertreatment system which comprises a preferably catalytically active particle filter (wall-flow filter) which is followed in turn by a throughflow monolith (flow-through monolith) which is preferably provided with a catalytically active function. Both components have the same storage functions for gaseous substances present in the exhaust gas of internal combustion engines. The system is suitable in particular for the simultaneous removal of particles and pollutants from the exhaust gas of both predominantly lean-operated internal combustion engines and also of internal combustion engines operated predominantly with a stoichiometric air/fuel mixture. Likewise described is a process for the production and the use of such a system for exhaust-gas aftertreatment.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 2, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Stephan Eckhoff, Wilfried Mueller, Joerg-Michael Richter, Stefan Franoschek, Martin Votsmeier
  • Patent number: 8397488
    Abstract: Described is a method for cleaning the exhaust gases of internal combustion engines, which method is suitable for reducing harmful gases and particle emissions. Here, the exhaust gas to be cleaned is conducted, under operating conditions, with a discontinuous profile of the air ratio ? across a wall-flow filter substrate which comprises a catalytically active coating containing one storage material. The storage material is suitable for temporarily storing one or more exhaust-gas components under certain operating conditions and releasing said exhaust-gas components again in a targeted fashion in the event of a suitable change in the operating conditions. The coating is configured such that the component has a gradient of the storage material concentration and/or of the total coating amount, with the highest concentration of the storage material in the longitudinal direction of the component being present on the inflow side.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: March 19, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Anke Woerz, Wilfried Mueller, Martin Votsmeier, Franz Dornhaus, Martin Roesch
  • Patent number: 8383544
    Abstract: Nitrogen oxide storage catalysts are used to remove the nitrogen oxides present in the lean exhaust gas of lean-burn engines. As a result of the stress due to high temperatures in vehicle operation, they are subject to thermal aging processes which affect both the nitrogen oxide storage components and the noble metals present as catalytically active components. The present invention provides a process with which the catalytic activity of a nitrogen oxide storage catalyst which comprises, in addition to platinum as a catalytically active component, basic compounds of strontium and/or barium on a support material comprising cerium oxide, said catalytic activity being lost owing to the thermal aging process, can be at least partly restored. The two-stage process is based on the fact that strontium and/or barium compounds formed during the thermal aging with the support material, which also comprise platinum, are recycled to the catalytically active forms by controlled treatment with specific gas mixtures.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 26, 2013
    Assignee: Umicore AG & Co., KG
    Inventors: Stephan Eckhoff, Meike Wittrock, Ulrich Goebel, Ina Grisstede, Ruediger Hoyer, Wilfried Mueller, Thomas Kreuzer, Maria Cristina Casapu, Jan-Dierk Grunwaldt, Marek Maciejewski, Aflons Baiker
  • Patent number: 8327625
    Abstract: To adhere to legal exhaust-gas regulations, the exhaust gases of a lean-burn engine must be freed from soot particles and nitrogen oxides. It is proposed that the cylinders of the lean-burn engine be divided into two groups which discharge their exhaust gases into two associated exhaust lines which each comprise a soot filter and which are merged at an opening-in point into a common exhaust line. The common exhaust line comprises the catalytic converter for the removal of the nitrogen oxides. By regenerating the two soot filters at different times, the exhaust-gas temperature in the common exhaust line is limited to a mean temperature between the exhaust-gas temperature of normal operation and that of regeneration operation, and the catalytic converter for the removal of the nitrogen oxides is preserved.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: December 11, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Stephan Eckhoff, Ina Grisstede, Wilfried Mueller, Thomas Kreuzer
  • Patent number: 8230674
    Abstract: Modern exhaust-gas purification systems in motor vehicles with a lean-burn engine include a starting catalyst fitted close to the engine and a main catalyst arranged in the underbody region, with both the starting catalyst and the main catalyst being formed by nitrogen oxide storage catalysts. The nitrogen oxide storage catalysts are in each case regenerated by the engine being briefly switched from lean-burn mode to rich-burn mode when the nitrogen oxide concentration in the exhaust gas downstream of the storage catalysts rises above a predetermined value. The starting catalyst is exposed to particularly high temperatures and is therefore prone to faster ageing of its nitrogen oxide storage capacity than the main catalyst.
    Type: Grant
    Filed: December 17, 2005
    Date of Patent: July 31, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Stephan Bremm, Christian Manfred Tomanik, Ulrich Goebel, Wilfried Mueller, Thomas Kreuzer
  • Patent number: 8226914
    Abstract: Soot filters for removing soot from the exhaust gas of lean-burn engines become blocked with progressive operating duration on account of the deposition of soot, and must therefore be regenerated at regular intervals. It has been found that reliable operation of the soot filter is possible only if an active regeneration is carried out from time to time by increasing the exhaust-gas temperature to the soot ignition temperature. For this purpose, an oxidation catalytic converter is usually arranged upstream of the soot filter, and the exhaust-gas temperature is increased by means of the catalytic combustion of additionally injected fuel. Here, the oxidation catalytic converter is subjected to high temperature loading and therefore ages very quickly.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: July 24, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Paul Spurk, Stèphanie Frantz, Thomas Le Tallec, Olivier Teysset, Wilfried Mueller, Gerald Jeske
  • Publication number: 20120148464
    Abstract: The present invention relates to an exhaust-gas aftertreatment system which comprises a preferably catalytically active particle filter (wall-flow filter) which is followed in turn by a throughflow monolith (flow-through monolith) which is preferably provided with a catalytically active function. Both components have the same storage functions for gaseous substances present in the exhaust gas of internal combustion engines. The system is suitable in particular for the simultaneous removal of particles and pollutants from the exhaust gas of both predominantly lean-operated internal combustion engines and also of internal combustion engines operated predominantly with a stoichiometric air/fuel mixture. Likewise described is a process for the production and the use of such a system for exhaust-gas aftertreatment.
    Type: Application
    Filed: August 20, 2010
    Publication date: June 14, 2012
    Applicant: UMICORE AG &CO. KG
    Inventors: Stephan Eckhoff, Wilfried Mueller, Joerg-Michael Richter, Stefan Franoschek, Martin Votsmeier
  • Publication number: 20110258982
    Abstract: Nitrogen oxide storage catalysts are used to remove the nitrogen oxides present in the lean exhaust gas of lean-burn engines. Storage catalysts are thermally aged by high temperatures. Ageing is due to sintering of the catalytically active noble metal components of the catalyst and to formation of compounds of the storage components with the support materials. According to the invention, the formation of compounds of the storage materials can be largely reversed by treatment of the storage material with a gas mixture containing carbon dioxide, optionally water vapor and optionally nitrogen oxides at temperatures in the range from 200° C. to 950° C., preferably from 300° C. to 700° C. The reactivation can be carried out under emission-neutral conditions directly in the vehicle during driving operation by setting of suitable exhaust gas conditions and regulating the air/fuel ratio.
    Type: Application
    Filed: June 5, 2007
    Publication date: October 27, 2011
    Applicant: UMICORE AG & Co. KG
    Inventors: Stephan Eckhoff, Meike Wittrock, Ulrich Goebel, Wilfried Mueller, Thomas Kreuzer
  • Publication number: 20110094207
    Abstract: Described is a method for cleaning the exhaust gases of internal combustion engines, which method is suitable for reducing harmful gases and particle emissions. Here, the exhaust gas to be cleaned is conducted, under operating conditions, with a discontinuous profile of the air ratio ? across a wall-flow filter substrate which comprises a catalytically active coating containing one storage material. The storage material is suitable for temporarily storing one or more exhaust-gas components under certain operating conditions and releasing said exhaust-gas components again in a targeted fashion in the event of a suitable change in the operating conditions. The coating is configured such that the component has a gradient of the storage material concentration and/or of the total coating amount, with the highest concentration of the storage material in the longitudinal direction of the component being present on the inflow side.
    Type: Application
    Filed: October 27, 2010
    Publication date: April 28, 2011
    Applicant: Umicore AG & Co. KG
    Inventors: Anke Woerz, Wilfried Mueller, Martin Votsmeier, Franz Dornhaus, Martin Roesch
  • Patent number: 7905087
    Abstract: Nitrogen oxide storage catalytic converters for purifying the exhaust gas of lean-burn engines are periodically regenerated by switching the engine from lean-burn mode to rich-burn mode. After regeneration has taken place, the engine is switched back to lean-burn mode. At this time, rich exhaust gas is still flowing in the exhaust line from the engine to the catalytic converter, which rich exhaust gas is ejected via the catalytic converter into the environment by the following, lean exhaust gas. This leads to brief emissions peaks of the rich exhaust gas constituents and impairs the level of exhaust gas cleaning which can be obtained. In order to solve said problem, it is proposed to create oxidizing conditions by injecting air upstream of the storage catalytic converter, so that the rich exhaust gas constituents still flowing in the exhaust line upstream of the storage catalytic converter can be converted at the storage catalytic converter to form non-harmful products.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: March 15, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Ulrich Goebel, Stephan Bremm, Christian Manfred Tomanik, Wilfried Mueller, Thomas Kreuzer
  • Publication number: 20110000189
    Abstract: The adherence to future legally obligatory exhaust gas limit values for diesel vehicles in Europe, North America and Japan requires not only the removal of particles but also effective removal of nitrogen oxides from the exhaust gas (‘deNOx’). The ‘active SCR process’ is the preferred method for this. The nitrogen oxide conversions achieved by means of this process are particularly high when an optimal NO2/NOx ratio, preferably 0.5, is set upstream of the SCR catalyst. The invention proposes a process which solves the problem of supplying NO2 in accordance with requirements by means of temperature control of the precatalyst which is decoupled from the operating state of the engine.
    Type: Application
    Filed: December 12, 2008
    Publication date: January 6, 2011
    Applicant: UMICORE AG & CO. KG
    Inventors: Lothar Mussmann, Ingo Lappas, Andreas Geisselmann, Wilfried Mueller